cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060664 Numbers k such that sigma(x) = k has exactly 8 solutions.

Original entry on oeis.org

336, 432, 672, 756, 840, 1536, 1620, 1764, 1848, 2280, 2394, 2604, 2808, 3264, 4080, 4480, 4860, 5328, 6528, 6624, 7128, 8316, 8568, 8880, 10608, 11040, 11448, 12288, 12420, 12636, 13176, 13200, 13248, 13536, 13860, 14196, 14208, 14448, 14700
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Examples

			336 = sigma(132) = sigma(140) = sigma(182) = sigma(188) = sigma(195) = sigma(249) = sigma(287) = sigma(299).
		

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), this sequence (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Maple
    N:= 30000: # to get terms <= N
    V:= Vector(N):
    for k from 1 to N-1 do
      t:= numtheory:-sigma(k);
      if t <= N then V[t]:= V[t]+1 fi
    od:
    select(t -> V[t]=8, [$1..N]); # Robert Israel, Sep 22 2019
  • Mathematica
    a = Table[ 0, {20000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 20001, a[ [ s ] ]++ ], {n, 1, 20000} ]; Select[ Range[ 20000 ], a[ [ # ] ] == 8 & ]
  • PARI
    is(k) = invsigmaNum(k) == 8 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp