A060701 Table by antidiagonals of Mahonian numbers T(n,k): permutations of n letters with k inversions.
1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 1, 5, 4, 1, 0, 0, 0, 6, 9, 5, 1, 0, 0, 0, 5, 15, 14, 6, 1, 0, 0, 0, 3, 20, 29, 20, 7, 1, 0, 0, 0, 1, 22, 49, 49, 27, 8, 1, 0, 0, 0, 0, 20, 71, 98, 76, 35, 9, 1, 0, 0, 0, 0, 15, 90, 169, 174, 111, 44, 10, 1, 0, 0, 0, 0, 9, 101, 259, 343, 285
Offset: 0
Examples
1; 0,1; 0,1,1; 0,0,2,1; 0,0,2,3,1; 0,0,1,5,4,1; 0,0,0,6,9,5,1; ... [1, 4, 2, 3], [1, 3, 4, 2], [2, 1, 4, 3], [2, 3, 1, 4], [3, 1, 2, 4] have 2 inversions so T(4, 2)=5.
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Corollary 1.3.10, p. 21.
Crossrefs
Programs
-
PARI
T(n,k)=polcoeff(prod(j=1,n-1,sum(i=0,j,x^i)),k)
Formula
T(n, k)=sum_{j=0..n}[T(n-1, k-j)].
Product (1+x+...+x^k), k=1..n-1 = Sum T(n, k)x^k, k=0..n(n-1)/2.
Extensions
Additional comments from Michael Somos, Jun 23 2002.