A060708 The Reuleaux Triangle constant.
0, 7, 0, 4, 7, 7, 0, 9, 2, 3, 0, 1, 0, 4, 5, 7, 9, 7, 2, 4, 6, 7, 5, 9, 8, 5, 2, 0, 8, 8, 6, 8, 1, 5, 2, 5, 8, 6, 2, 7, 1, 8, 2, 0, 7, 2, 7, 8, 2, 3, 6, 2, 5, 9, 6, 4, 5, 9, 5, 6, 8, 8, 0, 6, 4, 2, 7, 9, 4, 1, 6, 9, 4, 6, 8, 8, 7, 0, 4, 4, 8, 0, 7, 7, 3, 4, 4, 4, 3, 1, 9, 2, 9, 2, 4, 3, 4, 2, 4, 6, 1, 5, 3, 2, 6
Offset: 1
Examples
0.704770923010457972467598520886815258627182072782362596459568806427941... [_Harry J. Smith_, Jul 09 2009]
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.10, p. 513.
- Martin Gardner, "The Unexpected Hanging," page 215.
- Clifford A. Pickover, The Math Book, Sterling Publishing Co. (New York), 2009, p. 266.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Eric Weisstein's World of Mathematics, Reuleaux Triangle.
- Wikipedia, Reuleaux triangle.
- Index entries for transcendental numbers.
Crossrefs
Cf. A060709.
Programs
-
Mathematica
RealDigits[N[(Pi - Sqrt[3])/2, 100]][[1]]
-
PARI
{ default(realprecision, 20080); x=(Pi - sqrt(3))/2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b060708.txt", n, " ", d)); } \\ Harry J. Smith, Jul 09 2009
Formula
Equals (Pi - sqrt(3))/2.
Extensions
Final digits of sequence corrected using the b-file. - N. J. A. Sloane, Aug 30 2009