A060763 Number of distinct differences between consecutive divisors (ordered by increasing magnitude) of n which are not also divisors of n.
0, 0, 1, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 3, 1, 1, 0, 2, 1, 3, 1, 1, 1, 1, 0, 3, 1, 3, 0, 1, 1, 3, 1, 1, 0, 1, 1, 4, 1, 1, 0, 2, 2, 3, 1, 1, 0, 3, 2, 3, 1, 1, 0, 1, 1, 4, 0, 3, 1, 1, 1, 3, 3, 1, 0, 1, 1, 3, 1, 3, 1, 1, 2, 4, 1, 1, 1, 3, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 0, 1, 2, 4, 0, 1, 1, 1, 1, 5
Offset: 1
Keywords
Examples
For n=70, divisors={1,2,5,7,10,14,35,70}; differences={1,3,2,3,4,21,35}; the differences {3,4,21} are not divisors, so a(70)=3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local D,L; D:= numtheory:-divisors(n); L:= sort(convert(D,list)); nops(convert(L[2..-1]-L[1..-2],set) minus D); end proc: map(f, [$1..200]); # Robert Israel, Jul 03 2017
-
Mathematica
a[n_] := Length[Complement[Drop[d=Divisors[n], 1]-Drop[d, -1], d]]
-
PARI
a(n) = my(d=divisors(n)); #select(x->(setsearch(d, x)==0), vecsort(vector(#d-1, k, d[k+1] - d[k]),,8)); \\ Michel Marcus, Jul 04 2017
Extensions
Edited by Dean Hickerson, Jan 22 2002