A060775 The greatest divisor d|n such that d < n/d, with a(1) = 1.
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 4, 3, 2, 1, 4, 1, 2, 3, 4, 1, 5, 1, 4, 3, 2, 5, 4, 1, 2, 3, 5, 1, 6, 1, 4, 5, 2, 1, 6, 1, 5, 3, 4, 1, 6, 5, 7, 3, 2, 1, 6, 1, 2, 7, 4, 5, 6, 1, 4, 3, 7, 1, 8, 1, 2, 5, 4, 7, 6, 1, 8, 3, 2, 1, 7, 5, 2, 3
Offset: 1
Examples
n = 252, D = {1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252}, 18 divisors, the 9th is 14, so a(252) = 14. From _Gus Wiseman_, Feb 28 2021: (Start) The strictly inferior divisors of selected n: n = 1 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 ----------------------------------------------------------------- {} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 3 3 4 3 3 5 3 3 7 3 3 5 6 7 4 5 10 4 4 13 5 4 6 6 6 6 6 5 8 9 11 12 7 6 10 8 14 10 12 15 (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (terms n = 2..1000 from Harry J. Smith)
Crossrefs
The weakly inferior version is A033676.
Positions of first appearances are A180291.
These are the row-maxima of A341674.
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A070039 adds up strictly inferior divisors.
A207375 lists central divisors.
A333805 counts strictly inferior odd divisors.
A333806 counts strictly inferior prime divisors.
A341596 counts strictly inferior squarefree divisors.
A341677 counts strictly inferior prime-power divisors.
Programs
-
Maple
with(numtheory): a:= n-> max(select(d-> is(d=1 or d
Alois P. Heinz, Jan 29 2018 -
Mathematica
Table[Part[Divisors[w], Floor[DivisorSigma[0, w]/2]], {w, 1, 256}] Table[If[n==1,1,Max[Select[Divisors[n],#
Gus Wiseman, Feb 28 2021 *) -
PARI
A060775(n)=if(n>1,divisors(n)[numdiv(n)\2],1) \\ M. F. Hasler, Sep 21 2011
Formula
a(n) = max { d: d|n and d < sqrt(n) or d = 1 }, where "|" means "divides". [Corrected by M. F. Hasler, Apr 03 2019]
Extensions
a(1) = 1 added (to preserve the relation a(n) | n) by Franklin T. Adams-Watters, Jan 27 2018
Edited by M. F. Hasler, Apr 03 2019
Name changed by Gus Wiseman, Feb 28 2021 (was: Lower central (median) divisor of n, with a(1) = 1.)
Comments