cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060838 Rank of elliptic curve x^3 + y^3 = n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 0, 1, 1, 1, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Noam Katz (noamkj(AT)hotmail.com), May 02 2001

Keywords

Comments

The elliptic curve X^3 + Y^3 = D*Z^3 where D is a rational integer has a birationally equivalent form y^2*z = x^3 - 2^4*3^3*D^2*z^3 where x = 2^2*3*D*Z, y = 2^2*3^3*D*(Y - X), z = X + Y (see p. 123 of Stephens). Taking z = 1 and 2^2*3^3 = 432 yields y^2 = x^3 - 432*D^2, which is the Weierstrass form of the elliptic curve used by John Voight in the Magma program below. - Ralf Steiner, Nov 11 2017
Zagier and Kramarz studied the analytic rank of the curve E: x^3 + y^3 = m, where m is cubefree. They computed L(E,1) for 0 < m <= 70000 and also L'(E,1) if the sign of the functional equation for L(E,1) was negative. In the second case the range was only 0 < m <= 20000. - Attila Pethő, Posting to the Number Theory List, Nov 11 2017

Crossrefs

Cf. A060748 (positions of records in this sequence), A060950.

Programs

  • Magma
    seq := [];
    M := 10000;
    for m := 1 to M do
    E := EllipticCurve([0,-432*m^2]);
    Append(~seq, Rank(E));
    end for;
    seq;
    // John Voight, Nov 02 2017
    
  • PARI
    {a(n) = ellanalyticrank(ellinit([0, 0, 0, 0, -432*n^2]))[1]} \\ Seiichi Manyama, Aug 25 2019

Extensions

Many thanks to Andrew V. Sutherland, John Voight, and Joseph L. Wetherell, who all responded to my request for additional terms for this sequence. - N. J. A. Sloane, Nov 01 2017