A060839 Number of solutions to x^3 == 1 (mod n).
1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 3, 3, 1, 3, 1, 1, 1, 1, 3, 3, 3, 1, 1, 3, 1, 1, 1, 3, 3, 3, 3, 3, 1, 1, 3, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 1, 3, 3, 9, 1, 3, 1, 3, 1, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 1, 3, 1, 1, 3, 1, 3, 1, 1, 1, 3, 9, 1, 3, 1, 3, 1, 3, 3, 3, 1, 1, 1, 3, 3, 3
Offset: 1
Examples
a(7) = 3 because the three solutions to x^3 == 1 (mod 7) are x = 1,2,4.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Steven Finch, Greg Martin and Pascal Sebah, Roots of unity and nullity modulo n, Proc. Amer. Math. Soc., Vol. 138, No. 8 (2010), pp. 2729-2743.
- Steven Finch and Pascal Sebah, Squares and Cubes Modulo n, arXiv:math/0604465 [math.NT], 2006-2016.
Crossrefs
Programs
-
Maple
A060839 := proc(n) local a,pf,p,r; a := 1 ; for pf in ifactors(n)[2] do p := op(1,pf); r := op(2,pf); if p = 2 then ; elif p =3 then if r >= 2 then a := a*3 ; end if; else if modp(p,3) = 2 then ; else a := 3*a ; end if; end if; end do: a ; end proc: seq(A060839(n),n=1..40) ; # R. J. Mathar, Mar 02 2015
-
Mathematica
a[n_] := Sum[ If[ Mod[k^3-1, n] == 0, 1, 0], {k, 1, n}]; Table[ a[n], {n, 1, 105}](* Jean-François Alcover, Nov 14 2011, after PARI *) f[p_, e_] := If[Mod[p, 3] == 1, 3, 1]; f[3, 1] = 1; f[3, e_] := 3; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
-
PARI
a(n)=sum(i=1,n,if((i^3-1)%n,0,1))
-
PARI
a(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]==3, 3^min(f[i, 2]-1, 1), if(f[i, 1]%3==1, 3, 1))) \\ Jianing Song, Oct 21 2022
-
Python
from math import prod from sympy import factorint def A060839(n): return prod(3 for p, e in factorint(n).items() if (p!=3 or e!=1) and p%3!=2) # Chai Wah Wu, Oct 19 2022
Formula
Let b(n) be the number of primes dividing n which are congruent to 1 (mod 3) (sequence A005088); then a(n) is 3^b(n) if n is not divisible by 9 and 3^(b(n) + 1) if n is divisible by 9.
Multiplicative with a(3) = 1, a(3^e) = 3, e >= 2, a(p^e) = 3 for primes p of the form 3k+1, a(p^e) = 1 for primes p of the form 3k+2. - David W. Wilson, May 22 2005 [Corrected by Jianing Song, Oct 21 2022]
If the multiplicative group of integers modulo n has (Z/nZ)* = C_{k_1} X C_{k_2} X ... X C_{k_r}, then a(n) = Product_{i=1..r} gcd(3,k_r). - Jianing Song, Oct 21 2022
Comments