A060860 Numbers k such that k^2-1 and k^2 are consecutive powerful numbers.
3, 17, 26, 99, 485, 577, 1351, 3363, 19601, 24335, 70226, 114243, 470449, 665857, 930249, 2862251, 3650401, 3880899, 22619537, 39480499, 130576328, 131836323, 189750626, 456335045, 768398401, 1184384449, 4478554083, 9863382151, 10850138895, 26102926097
Offset: 1
Keywords
Examples
592192224 = 2^5*3^2*13^2*23^3 = 24334*24336, 592192225 = 5^2*31^2*157^2 = 24335^2.
Links
Programs
-
Mathematica
seq[max_] := Module[{p = Union[Flatten[Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]]], q, i}, q = Union[p, 2*Select[p, # <= max && OddQ[#] &]]; i = Position[Differences[q], 2] // Flatten; Sqrt[q[[i]]*(q[[i]] + 2) + 1]]; seq[10^10] (* Amiram Eldar, Feb 23 2024 *)
Formula
a(n) = sqrt(A060859(n) + 1). - Amiram Eldar, Feb 23 2024
Extensions
Corrected and extended by Jud McCranie, Jul 08 2001
a(21)-a(24) from Donovan Johnson, Apr 27 2008
a(25)-a(26) from Donovan Johnson, Dec 07 2008
a(27)-a(28) from Donovan Johnson, Jun 17 2011
a(29)-a(30) from Donovan Johnson, Nov 15 2011
Comments