A238976
a(n) = ((3^(n-1)-1)^2)/4.
Original entry on oeis.org
0, 1, 16, 169, 1600, 14641, 132496, 1194649, 10758400, 96845281, 871666576, 7845176329, 70607118400, 635465659921, 5719195722256, 51472775849209, 463255025689600, 4169295360346561, 37523658630539536, 337712928837117289, 3039416363020840000, 27354747277647913201, 246192725530212278416
Offset: 1
A379587
Array read by ascending antidiagonals: A(n, k) = (k^n - 1)^2/(k - 1), with k >= 2.
Original entry on oeis.org
0, 1, 0, 9, 2, 0, 49, 32, 3, 0, 225, 338, 75, 4, 0, 961, 3200, 1323, 144, 5, 0, 3969, 29282, 21675, 3844, 245, 6, 0, 16129, 264992, 348843, 97344, 9245, 384, 7, 0, 65025, 2389298, 5589675, 2439844, 335405, 19494, 567, 8, 0, 261121, 21516800, 89467563, 61027344, 12090125, 960000, 37303, 800, 9, 0
Offset: 0
The array begins as:
0, 0, 0, 0, 0, 0, ...
1, 2, 3, 4, 5, 6, ...
9, 32, 75, 144, 245, 384, ...
49, 338, 1323, 3844, 9245, 19494, ...
225, 3200, 21675, 97344, 335405, 960000, ...
961, 29282, 348843, 2439844, 12090125, 47073606, ...
...
-
A[n_,k_]:=(k^n-1)^2/(k-1); Table[A[n-k+2,k],{n,0,9},{k,2,n+2}]//Flatten
A086752
Number of n X n matrices over GF(3) with rank n-1.
Original entry on oeis.org
1, 32, 8112, 17971200, 355207057920, 63010655570903040, 100505356319291594711040, 1442361950110091891786121216000, 186276322602412236974585775503690956800, 216505458700483736766078241517019274701019545600, 2264736353104098912130003755084217747715114856943819161600
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 31 2003
-
Table[3^(n^2) * (1 - 1/3^n) * QPochhammer[1/3^n, 3, n-1]/2, {n, 1, 10}] (* Vaclav Kotesovec, Apr 14 2024 *)
Showing 1-3 of 3 results.
Comments