cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A238976 a(n) = ((3^(n-1)-1)^2)/4.

Original entry on oeis.org

0, 1, 16, 169, 1600, 14641, 132496, 1194649, 10758400, 96845281, 871666576, 7845176329, 70607118400, 635465659921, 5719195722256, 51472775849209, 463255025689600, 4169295360346561, 37523658630539536, 337712928837117289, 3039416363020840000, 27354747277647913201, 246192725530212278416
Offset: 1

Views

Author

Kival Ngaokrajang, Mar 07 2014

Keywords

Comments

If the Cantor square fractal is modified as shown in the illustration (see Links), then 4*a(n) is the total number of holes in the modified Cantor square fractal after n iterations. The total number of sides (outside) is 4*A171498(n-1). The total length of the sides (outside) converges to 20 when the initial total side length is 12 (starting with 5 unit squares).
For the Cantor square fractal, the total number of sides (outside) is 4*A168616(n+2). The total number of holes is 4*A060867(n-1) for n > 1. The total length of the sides (outside) converges to 12 with the same initial condition (i.e., 5 unit square); its maximum is 17.333... and is reached at n = 2, 3. The Cantor square fractal and modified one are not true fractals.
See illustrations in links.

Crossrefs

Programs

  • PARI
    a(n) = ((3^(n-1)-1)^2)/4; \\ Joerg Arndt, Mar 08 2014

Formula

a(n) = (A024023(n-1))^2/4.
G.f.: x*(3*x + 1)/((1-x)*(1-3*x)*(1-9*x)). - Ralf Stephan, Mar 14 2014

A379587 Array read by ascending antidiagonals: A(n, k) = (k^n - 1)^2/(k - 1), with k >= 2.

Original entry on oeis.org

0, 1, 0, 9, 2, 0, 49, 32, 3, 0, 225, 338, 75, 4, 0, 961, 3200, 1323, 144, 5, 0, 3969, 29282, 21675, 3844, 245, 6, 0, 16129, 264992, 348843, 97344, 9245, 384, 7, 0, 65025, 2389298, 5589675, 2439844, 335405, 19494, 567, 8, 0, 261121, 21516800, 89467563, 61027344, 12090125, 960000, 37303, 800, 9, 0
Offset: 0

Views

Author

Stefano Spezia, Dec 26 2024

Keywords

Examples

			The array begins as:
    0,     0,      0,       0,        0,        0, ...
    1,     2,      3,       4,        5,        6, ...
    9,    32,     75,     144,      245,      384, ...
   49,   338,   1323,    3844,     9245,    19494, ...
  225,  3200,  21675,   97344,   335405,   960000, ...
  961, 29282, 348843, 2439844, 12090125, 47073606, ...
  ...
		

Crossrefs

Cf. A027620, A060867 (k=2), A060868 (k=3), A060869 (k=4), A060870 (k=5), A060871 (k=7), A361475, A379588 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=(k^n-1)^2/(k-1); Table[A[n-k+2,k],{n,0,9},{k,2,n+2}]//Flatten

Formula

G.f. of column k: (1 - k)*x*(1 + k*x)/((1 - x)*(1 - k*x)*(1 - k^2*x)).
E.g.f. of column k: exp(x)*(1 - 2*exp((k-1)*x) + exp((k^2-1)*x))/(k - 1).
A(2, n) = A027620(n-2) for n > 1.

A086752 Number of n X n matrices over GF(3) with rank n-1.

Original entry on oeis.org

1, 32, 8112, 17971200, 355207057920, 63010655570903040, 100505356319291594711040, 1442361950110091891786121216000, 186276322602412236974585775503690956800, 216505458700483736766078241517019274701019545600, 2264736353104098912130003755084217747715114856943819161600
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 31 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[3^(n^2) * (1 - 1/3^n) * QPochhammer[1/3^n, 3, n-1]/2, {n, 1, 10}] (* Vaclav Kotesovec, Apr 14 2024 *)

Formula

For n>=2: a(n) = Product_{j=0..n-2} (3^n - 3^j)^2 / (3^(n-1)- 3^j).
a(n) = ((3^n-1)/2)*Product_{j=0..n-2} (3^n-3^j). - David Wasserman, Mar 28 2005

Extensions

More terms from David Wasserman, Mar 28 2005
Showing 1-3 of 3 results.