cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379587 Array read by ascending antidiagonals: A(n, k) = (k^n - 1)^2/(k - 1), with k >= 2.

Original entry on oeis.org

0, 1, 0, 9, 2, 0, 49, 32, 3, 0, 225, 338, 75, 4, 0, 961, 3200, 1323, 144, 5, 0, 3969, 29282, 21675, 3844, 245, 6, 0, 16129, 264992, 348843, 97344, 9245, 384, 7, 0, 65025, 2389298, 5589675, 2439844, 335405, 19494, 567, 8, 0, 261121, 21516800, 89467563, 61027344, 12090125, 960000, 37303, 800, 9, 0
Offset: 0

Views

Author

Stefano Spezia, Dec 26 2024

Keywords

Examples

			The array begins as:
    0,     0,      0,       0,        0,        0, ...
    1,     2,      3,       4,        5,        6, ...
    9,    32,     75,     144,      245,      384, ...
   49,   338,   1323,    3844,     9245,    19494, ...
  225,  3200,  21675,   97344,   335405,   960000, ...
  961, 29282, 348843, 2439844, 12090125, 47073606, ...
  ...
		

Crossrefs

Cf. A027620, A060867 (k=2), A060868 (k=3), A060869 (k=4), A060870 (k=5), A060871 (k=7), A361475, A379588 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=(k^n-1)^2/(k-1); Table[A[n-k+2,k],{n,0,9},{k,2,n+2}]//Flatten

Formula

G.f. of column k: (1 - k)*x*(1 + k*x)/((1 - x)*(1 - k*x)*(1 - k^2*x)).
E.g.f. of column k: exp(x)*(1 - 2*exp((k-1)*x) + exp((k^2-1)*x))/(k - 1).
A(2, n) = A027620(n-2) for n > 1.

A086778 Number of n X n matrices over GF(5) with rank n-1.

Original entry on oeis.org

1, 144, 461280, 36211968000, 70794513504000000, 3457427279866560000000000, 4220654362961578542000000000000000, 128805138489674665490472000000000000000000000
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 03 2003

Keywords

Crossrefs

Formula

For n>=2: a(n) = product j=0...n-2 (5^n - 5^j)^2 / (5^(n-1)- 5^j).

Extensions

More terms from David Wasserman, Mar 28 2005
Showing 1-2 of 2 results.