A060874 Intrinsic 4-palindromes: n is an intrinsic k-palindrome if it is a k-digit palindrome in some base.
9, 15, 28, 40, 52, 56, 65, 68, 80, 85, 105, 125, 126, 130, 150, 156, 170, 186, 190, 195, 215, 216, 217, 235, 246, 252, 255, 259, 282, 301, 312, 342, 343, 344, 372, 378, 385, 400, 408, 427, 434, 438, 456, 468, 476, 498, 504, 512, 513, 518, 534
Offset: 1
Links
- Robert Israel and Peter Kagey, Table of n, a(n) for n = 1..10000 (1..1000 from Peter Kagey)
- A. J. Di Scala and M. Sombra, Intrinsic Palindromic Numbers, arXiv:math/0105022 [math.GM], 2001.
- A. J. Di Scala and M. Sombra, Intrinsic Palindromes, Fib. Quart. 42, no. 1, Feb. 2004, pp. 76-81.
Programs
-
Maple
N:= 10^4: # to get all terms <= N S:= {}: for b from 2 to floor(N^(1/3)) do S:= S union {seq(seq((b^3+1)*i+(b^2+b)*j,j=0..b-1),i=1..b-1)} od: sort(convert(select(`<=`,S,N),list)); # Robert Israel, May 23 2016
Comments