A060914 Integers i > 1 for which there are two primes p such that i is a solution mod p of x^3 = 2.
7, 16, 20, 21, 26, 32, 34, 45, 49, 50, 52, 54, 57, 58, 61, 70, 72, 79, 81, 86, 92, 94, 98, 103, 111, 112, 114, 116, 119, 122, 125, 130, 136, 137, 141, 143, 147, 152, 157, 160, 170, 176, 179, 181, 184, 186, 197, 198, 199, 214, 221, 222, 225, 231, 234, 236, 240
Offset: 1
Keywords
Examples
a(3) = 20, since 20 is (after 7 and 16) the third integer i for which there are two primes p > i (viz. 31 and 43) such that i is a solution mod p of x^3 = 2, or equivalently, 20^3 - 2 = 7998 = 2*3*31*43 has two prime factors > 20. (cf. A059940).
Formula
a(n) = n-th integer i such that i^3 - 2 has two prime factors > i.
Comments