A060922 Convolution triangle for Lucas numbers A000032(n+1), n >= 0.
1, 3, 1, 4, 6, 1, 7, 17, 9, 1, 11, 38, 39, 12, 1, 18, 80, 120, 70, 15, 1, 29, 158, 315, 280, 110, 18, 1, 47, 303, 753, 905, 545, 159, 21, 1, 76, 566, 1687, 2568, 2120, 942, 217, 24, 1, 123, 1039, 3612, 6666, 7043, 4311
Offset: 0
Examples
p(2,x) = 4+6*x+x^2. Triangle begins: 1 ; 3, 1; 4, 6, 1; 7, 17, 9, 1; 11, 38, 39, 12, 1; 18, 80, 120, 70, 15, 1; 29, 158, 315, 280, 110, 18, 1; 47, 303, 753, 905, 545, 159, 21, 1;
Crossrefs
Cf. A000032.
Programs
-
Maple
# Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left. PMatrix(10, A000204); # Peter Luschny, Oct 19 2022
Formula
a(n, m)=((n-m+1)*a(n, m-1)+2*(2*n-m)*a(n-1, m-1)+4*(n-1)*a(n-2, m-1))/(5*m), n >= m >= 1, a(n, 0)= A000204(n+1)= A000032(n+1).
G.f. for m-th column: ((1+2*x)/(1-x-x^2))* ((x*(1+2*x))/(1-x-x^2))^m.
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 21 2014
Extensions
Example improved by Philippe Deléham, Jan 21 2014
Comments