cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A060924 Bisection of Lucas triangle A060922: odd-indexed members of column sequences of A060922 (not counting leading zeros).

Original entry on oeis.org

3, 7, 6, 18, 38, 9, 47, 158, 120, 12, 123, 566, 753, 280, 15, 322, 1880, 3612, 2568, 545, 18, 843, 5964, 15040, 16220, 7043, 942, 21, 2207, 18342, 57366, 83780, 57560, 16536, 1498, 24, 5778, 55162, 206115
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Row sums give A060927. Column sequences (without leading zeros) are, for m=0..5: A005248(n+1), 2*A061171, A061172, 4*A061173, A061174, 2*A061175.
Companion triangle A060923 (even part).

Examples

			{3}; {7,6}; {18,38,9}; {47,158,120,12}; ...; pLo(2,x)= 2*(3+x-2*x^2).
		

Crossrefs

Cf. A005248.

Formula

a(n, m) = A060922(2*n+1-m, m).
a(n, m) = ((2*n-m+1)*A060923(n, m-1) + 2*(2*(2*n+1)-3*m)*a(n-1, m-1) + 4*(2*n-m)*A060923(n-1, m-1))/(5*m), m >= n >= 1; a(n, 0) = A005248(n); otherwise 0.
G.f. for column m >= 0: x^m*pLo(m+1, x)/(1-3*x+x^2)^(m+1), where pLo(n, x) := Sum_{m=0..n+floor((n-1)/2)} A061187(n-1, m)*x^m are the row polynomials of the (signed) staircase A061187.
T(n,k) = 3*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2) + 4*T(n-3,k-2), T(0,0) = 3, T(1,0) = 7, T(1,1) = 6, T(2,0) = 18, T(2,1) = 38, T(2,2) = 9, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 21 2014

A060923 Bisection of Lucas triangle A060922: even-indexed members of column sequences of A060922 (not counting leading zeros).

Original entry on oeis.org

1, 4, 1, 11, 17, 1, 29, 80, 39, 1, 76, 303, 315, 70, 1, 199, 1039, 1687, 905, 110, 1, 521, 3364, 7470, 6666, 2120, 159, 1, 1364, 10493, 29634, 37580, 20965, 4311, 217, 1, 3571, 31885, 109421, 181074, 148545
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Examples

			Triangle begins:
  {1};
  {4,1};
  {11,17,1};
  {29,80,39,1};
  ...
pLe(2,x) = 1+11*x-11*x^2+4*x^3.
		

Crossrefs

Row sums give A060926.
Column sequences (without leading zeros) are, for m=0..3: A002878, A060934-A060936.
Companion triangle A060924 (odd part).
Cf. A060922.

Formula

a(n, m) = A060922(2*n-m, m).
a(n, m) = ((2*(n-m)+1)*A060924(n-1, m-1) + 2*(4*n-3*m)*a(n-1, m-1) + 4*(2*n-m-1)*A060924(n-2, m-1))/(5*m), m >= n >= 1; a(n, 0)= A002878(n); else 0.
G.f. for column m >= 0: x^m*pLe(m+1, x)/(1-3*x+x^2)^(m+1), where pLe(n, x) := Sum_{m=0..n+floor(n/2)} A061186(n, m)*x^m are the row polynomials of the (signed) staircase A061186.
T(n,k) = 3*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2) + 4*T(n-3,k-2), T(0,0) = 1, T(1,0) = 4, T(1,1) = 1, T(2,0) = 11, T(2,1) = 17, T(2,2) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 21 2014

A060925 a(n) = 2*a(n-1) + 3*a(n-2), a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 11, 34, 101, 304, 911, 2734, 8201, 24604, 73811, 221434, 664301, 1992904, 5978711, 17936134, 53808401, 161425204, 484275611, 1452826834, 4358480501, 13075441504, 39226324511, 117678973534, 353036920601
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=charpoly(A,2). - Milan Janjic, Jan 26 2010

Crossrefs

Programs

Formula

Row sums of Lucas convolution triangle A060922.
Inverse binomial transform of A003947. - Philippe Deléham, Jul 23 2005
a(n) = Sum_{m=0..n} A060922(n, m) = Sum_{j=1..n} (a(j-1)*A000204(n-j+1)) + A000204(n+1).
a(n) = (5*3^n - (-1)^n)/4.
G.f.: (1+2*x)/(1 - 2*x - 3*x^2).
a(2n) = 3*a(2n-1) - 1; a(2n+1) = 3*a(2n) + 1. - Philippe Deléham, Jul 23 2005
Binomial transform is A003947. - Paul Barry, May 19 2003
E.g.f.: (-exp(-x) + 5*exp(3*x))/4. - G. C. Greubel, Apr 06 2021

Extensions

Recurrence, now used as definition, from Philippe Deléham, Jul 23 2005
Entry revised by N. J. A. Sloane, Sep 10 2006

A004799 Self-convolution of Lucas numbers.

Original entry on oeis.org

1, 6, 17, 38, 80, 158, 303, 566, 1039, 1880, 3364, 5964, 10493, 18342, 31885, 55162, 95032, 163114, 279051, 475990, 809771, 1374316, 2327372, 3933528, 6636025, 11176518, 18794633, 31560206, 52925984, 88646390, 148303719, 247841654
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [((5*n-4)*Lucas(n+1) + 2*Lucas(n))/5: n in [1..30]]; // G. C. Greubel, Dec 17 2017
    
  • Maple
    a:= n-> (Matrix([[17, 6, 1, 0]]). Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [2, 1, -2, -1][i] else 0 fi)^n) [1,4]: seq (a(n), n=1..40); # Alois P. Heinz, Oct 28 2008
  • Mathematica
    a[n_]:= ((5*n-4)*LucasL[n+1] + 2*LucasL[n])/5; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 12 2015 *)
  • PARI
    Vec(x*((1+2*x)/(1-x-x^2))^2 + O(x^50)) \\ Altug Alkan, Nov 12 2015
    
  • Sage
    [((5*n-4)*lucas_number2(n+1,1,-1) + 2*lucas_number2(n,1,-1))/5 for n in (1..30)] # G. C. Greubel, Apr 07 2021

Formula

From Wolfdieter Lang, Apr 24 2001: (Start)
a(n) = A060922(n, 1) (second column of Lucas triangle).
a(n) = ((-4 + 5*n)*L(n+1) + 2*L(n))/5 with L(n) = A000032(n) = A000204(n), n >= 1.
G.f.: x*((1+2*x)/(1-x-x^2))^2. (End)

Extensions

More terms from Alois P. Heinz, Oct 28 2008

A060929 Second convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 9, 39, 120, 315, 753, 1687, 3612, 7470, 15040, 29634, 57366, 109421, 206115, 384105, 709152, 1298613, 2360943, 4264835, 7659870, 13686456, 24340184, 43102644, 76031100, 133636825, 234116493, 408900987
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,9,39,120,315,753]; [n le 6 select I[n] else 3*Self(n-1) - 5*Self(n-3) + 3*Self(n-5) + Self(n-6): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    CoefficientList[Series[((1 + 2*x)/(1 - x - x^2))^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3,0,-5,0,3,1}, {1,9,39,120,315,753}, 30] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    x='x+O('x^30); Vec(((1+2*x)/(1-x-x^2))^3) \\ G. C. Greubel, Dec 21 2017
    

Formula

G.f.: ((1+2*x)/(1-x-x^2))^3.
a(n) = A060922(n+2, 2) (third column of Lucas triangle).
a(n) = (n+1)*((5*n+4)*L(n+2) + (5*n-2)*L(n+1))/10, n >= 1, with the Lucas numbers L(n)=A000032(n)=A000204(n), n >= 1.

A060930 Third convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 12, 70, 280, 905, 2568, 6666, 16220, 37580, 83780, 181074, 381488, 786715, 1593160, 3176210, 6246732, 12139859, 23344760, 44471340, 84005640, 157483176, 293201912, 542468100, 997906400, 1826073525
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( ((1+2*x)/(1-x-x^2))^4 )); // G. C. Greubel, Apr 08 2021
    
  • Mathematica
    Table[((25*n^3+90*n^2+95*n+6)*LucasL[n+4] -12*(5*n^2+10*n-3)*LucasL[n+2])/150, {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
  • Sage
    def A060930_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1+2*x)/(1-x-x^2))^4 ).list()
    A060930_list(40) # G. C. Greubel, Apr 08 2021

Formula

G.f.: ((1+2*x)/(1-x-x^2))^4.
a(n) = A060922(n+3, 3) (fourth column of Lucas triangle).
a(n) = (2*(25*n^3 + 60*n^2 + 35*n +24)*L(n+2) + (25*n^3 + 90*n^2 + 95*n + 6)*L(n+1))/(3!*5^2), with the Lucas numbers L(n) = A000032(n).

A060931 Fourth convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 15, 110, 545, 2120, 7043, 20965, 57560, 148545, 365045, 862224, 1970905, 4382820, 9520315, 20265665, 42385132, 87284120, 177293730, 355738710, 705980760, 1387213926, 2701362950, 5217448800, 10001654350
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( ((1+2*x)/(1-x-x^2))^5 )); // G. C. Greubel, Apr 08 2021
    
  • Mathematica
    Table[((n+1)/120)*((5*n^3+5*n^2-10*n+72)*LucasL[n+5] + 4*(5*n^2+10*n-24)*LucasL[n+ 4]), {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
  • Sage
    def A060931_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1+2*x)/(1-x-x^2))^5 ).list()
    A060931_list(40) # G. C. Greubel, Apr 08 2021

Formula

a(n) = A060921(n+4, 4) (fifth column of Lucas triangle).
a(n) = (n+1)*( (15*n^3 +55*n^2 +50*n +24)*L(n+2) + 2*(5*n^3 +15*n^2 +10*n +24)*L(n+1))/5!, with the Lucas numbers L(n)=A000032(n).
G.f.: ((1+2*x)/(1-x-x^2))^5.

A060932 Fifth convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 18, 159, 942, 4311, 16536, 55898, 171924, 491487, 1325546, 3409347, 8430246, 20164223, 46880424, 106350942, 236147828, 514553154, 1102562952, 2327442276, 4847463408, 9974081130, 20297335340
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( ((1+2*x)/(1-x-x^2))^6 )); // G. C. Greubel, Apr 08 2021
    
  • Mathematica
    Table[((744+2990*n+2895*n^2+1925*n^3+825*n^4+125*n^5)*LucasL[n+2] +3*(256+390*n + 505*n^2+425*n^3+175*n^4+25*n^5)*LucasL[n+1])/(5^2*5!), {n,0,40}] (* G. C. Greubel, Apr 08 2021 *)
  • Sage
    def A060932_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1+2*x)/(1-x-x^2))^6 ).list()
    A060932_list(40) # G. C. Greubel, Apr 08 2021

Formula

a(n) = A060922(n+5, 5) (sixth column of Lucas triangle).
G.f.: ((1+2*x)/(1-x-x^2))^6.
a(n) = ( 25*(125*n^5 +825*n^4 +1925*n^3 +2895*n^2 +2990*n +744)*L(n+2) +(1875*n^5 +13125*n^4 +31875*n^3 +37875*n^2 +29250*n +19200)*L(n+1))/(5!*5^4), with the Lucas numbers L(n)=A000032(n).

A061188 Triangle of coefficients of polynomials (rising powers) useful for convolutions of A000032(n+1), n >= 0 (Lucas numbers).

Original entry on oeis.org

0, 1, 5, 20, 45, 25, 240, 350, 600, 250, 3000, 9250, 13125, 8750, 1875, 93000, 373750, 361875, 240625, 103125, 15625, 3690000, 11077500, 12818750, 8531250, 4156250, 1181250, 125000, 116550000, 312037500
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

The row polynomials pL1(n,x) := Sum_{m=0..n} a(n,m)*x^m and pL2(n,x) := Sum_{m=0..n} A061189(n,m)*x^m appear in the k-fold convolution of the Lucas numbers L(n+1) = A000204(n+1) = A000032(n+1), n >= 0, as follows: L(k; n) := A060922(n+k,k) = (pL1(k,n)*L(n+2)+pL2(k,n)*L(n+1))/(k!*5^k).

Examples

			Triangle begins:
  {0};
  {1,5};
  {20,45,25};
  {240,350,600,250};
  ...;
pL1(2,n) = 5*(4+9*n+5*n^2) = 5*(1+n)*(4+5*n).
		

Crossrefs

Cf. A061189(n, m) (companion triangle), A060922(n, m) (Lucas convolution triangle).

A061189 Triangle of coefficients of polynomials (rising powers) useful for convolutions of A000204(n+1), n >= 0 (Lucas numbers).

Original entry on oeis.org

1, 2, 0, -10, 15, 25, 30, 475, 450, 125, 6000, 8500, 6250, 5000, 1250, 96000, 146250, 189375, 159375, 65625, 9375, 180000, 5355000, 8881250, 5578125, 2515625, 721875, 78125, 44100000, 254700000, 341775000
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

The row polynomials pL2(n,x) := Sum_{m=0..n} a(n,m)*x^m and pL1(n,x) := Sum_{m=0..n} A061188(n,m)*x^m appear in the k-fold convolution of the Lucas numbers L(n+1) = A000204(n+1) = A000032(n+1), n >= 0, as follows: L(k; n) := A060922(n+k,k) = (pL1(k,n)*L(n+2)+pL2(k,n)*L(n+1))/(k!*5^k).

Examples

			Triangle begins:
  {1};
  {2,0};
  {-10,15,25};
  {30,475,450,125};
  ...;
pL2(2,n) = 5*(-2+3*n+5*n^2) = 5*(1+n)*(-2+5*n).
L(2; n) := A060922(n+2,2) = A060929(n) = (1+n)*((4+5*n)*L(n+2)+(-2+5*n)*L(n+1))/(2*5).
		

Crossrefs

Cf. A061188(n, m) (companion triangle), A060922(n, m) (Lucas convolution triangle).
Showing 1-10 of 11 results. Next