A060924
Bisection of Lucas triangle A060922: odd-indexed members of column sequences of A060922 (not counting leading zeros).
Original entry on oeis.org
3, 7, 6, 18, 38, 9, 47, 158, 120, 12, 123, 566, 753, 280, 15, 322, 1880, 3612, 2568, 545, 18, 843, 5964, 15040, 16220, 7043, 942, 21, 2207, 18342, 57366, 83780, 57560, 16536, 1498, 24, 5778, 55162, 206115
Offset: 0
{3}; {7,6}; {18,38,9}; {47,158,120,12}; ...; pLo(2,x)= 2*(3+x-2*x^2).
A060923
Bisection of Lucas triangle A060922: even-indexed members of column sequences of A060922 (not counting leading zeros).
Original entry on oeis.org
1, 4, 1, 11, 17, 1, 29, 80, 39, 1, 76, 303, 315, 70, 1, 199, 1039, 1687, 905, 110, 1, 521, 3364, 7470, 6666, 2120, 159, 1, 1364, 10493, 29634, 37580, 20965, 4311, 217, 1, 3571, 31885, 109421, 181074, 148545
Offset: 0
Triangle begins:
{1};
{4,1};
{11,17,1};
{29,80,39,1};
...
pLe(2,x) = 1+11*x-11*x^2+4*x^3.
Companion triangle
A060924 (odd part).
A060925
a(n) = 2*a(n-1) + 3*a(n-2), a(0) = 1, a(1) = 4.
Original entry on oeis.org
1, 4, 11, 34, 101, 304, 911, 2734, 8201, 24604, 73811, 221434, 664301, 1992904, 5978711, 17936134, 53808401, 161425204, 484275611, 1452826834, 4358480501, 13075441504, 39226324511, 117678973534, 353036920601
Offset: 0
-
[(5*3^n - (-1)^n)/4: n in [0..30]]; // G. C. Greubel, Apr 06 2021
-
A060925:= n-> (5*3^n - (-1)^n)/4; seq(A060925(n), n=0..30); # G. C. Greubel, Apr 06 2021
-
f[n_]:=3/(n+2);x=2;Table[x=f[x];Denominator[x],{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2010 *)
LinearRecurrence[{2,3},{1,4},30] (* Harvey P. Dale, Mar 07 2014 *)
-
{a(n) = (5*3^n - (-1)^n)/4};
vector(30, n, a(n-1)) \\ Harry J. Smith, Jul 19 2009 \\ modified by G. C. Greubel, Apr 06 2021
-
[(5*3^n - (-1)^n)/4 for n in (0..30)] # G. C. Greubel, Apr 06 2021
A004799
Self-convolution of Lucas numbers.
Original entry on oeis.org
1, 6, 17, 38, 80, 158, 303, 566, 1039, 1880, 3364, 5964, 10493, 18342, 31885, 55162, 95032, 163114, 279051, 475990, 809771, 1374316, 2327372, 3933528, 6636025, 11176518, 18794633, 31560206, 52925984, 88646390, 148303719, 247841654
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Index entries for linear recurrences with constant coefficients, signature (2, 1, -2, -1).
-
[((5*n-4)*Lucas(n+1) + 2*Lucas(n))/5: n in [1..30]]; // G. C. Greubel, Dec 17 2017
-
a:= n-> (Matrix([[17, 6, 1, 0]]). Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [2, 1, -2, -1][i] else 0 fi)^n) [1,4]: seq (a(n), n=1..40); # Alois P. Heinz, Oct 28 2008
-
a[n_]:= ((5*n-4)*LucasL[n+1] + 2*LucasL[n])/5; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 12 2015 *)
-
Vec(x*((1+2*x)/(1-x-x^2))^2 + O(x^50)) \\ Altug Alkan, Nov 12 2015
-
[((5*n-4)*lucas_number2(n+1,1,-1) + 2*lucas_number2(n,1,-1))/5 for n in (1..30)] # G. C. Greubel, Apr 07 2021
A060929
Second convolution of Lucas numbers A000032(n+1), n >= 0.
Original entry on oeis.org
1, 9, 39, 120, 315, 753, 1687, 3612, 7470, 15040, 29634, 57366, 109421, 206115, 384105, 709152, 1298613, 2360943, 4264835, 7659870, 13686456, 24340184, 43102644, 76031100, 133636825, 234116493, 408900987
Offset: 0
-
I:=[1,9,39,120,315,753]; [n le 6 select I[n] else 3*Self(n-1) - 5*Self(n-3) + 3*Self(n-5) + Self(n-6): n in [1..30]]; // G. C. Greubel, Dec 21 2017
-
CoefficientList[Series[((1 + 2*x)/(1 - x - x^2))^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3,0,-5,0,3,1}, {1,9,39,120,315,753}, 30] (* G. C. Greubel, Dec 21 2017 *)
-
x='x+O('x^30); Vec(((1+2*x)/(1-x-x^2))^3) \\ G. C. Greubel, Dec 21 2017
A060930
Third convolution of Lucas numbers A000032(n+1), n >= 0.
Original entry on oeis.org
1, 12, 70, 280, 905, 2568, 6666, 16220, 37580, 83780, 181074, 381488, 786715, 1593160, 3176210, 6246732, 12139859, 23344760, 44471340, 84005640, 157483176, 293201912, 542468100, 997906400, 1826073525
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-8,5,8,-2,-4,-1).
-
R:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( ((1+2*x)/(1-x-x^2))^4 )); // G. C. Greubel, Apr 08 2021
-
Table[((25*n^3+90*n^2+95*n+6)*LucasL[n+4] -12*(5*n^2+10*n-3)*LucasL[n+2])/150, {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
-
def A060930_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( ((1+2*x)/(1-x-x^2))^4 ).list()
A060930_list(40) # G. C. Greubel, Apr 08 2021
A060931
Fourth convolution of Lucas numbers A000032(n+1), n >= 0.
Original entry on oeis.org
1, 15, 110, 545, 2120, 7043, 20965, 57560, 148545, 365045, 862224, 1970905, 4382820, 9520315, 20265665, 42385132, 87284120, 177293730, 355738710, 705980760, 1387213926, 2701362950, 5217448800, 10001654350
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-5,-10,15,11,-15,-10,5,5,1).
-
R:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( ((1+2*x)/(1-x-x^2))^5 )); // G. C. Greubel, Apr 08 2021
-
Table[((n+1)/120)*((5*n^3+5*n^2-10*n+72)*LucasL[n+5] + 4*(5*n^2+10*n-24)*LucasL[n+ 4]), {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
-
def A060931_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( ((1+2*x)/(1-x-x^2))^5 ).list()
A060931_list(40) # G. C. Greubel, Apr 08 2021
A060932
Fifth convolution of Lucas numbers A000032(n+1), n >= 0.
Original entry on oeis.org
1, 18, 159, 942, 4311, 16536, 55898, 171924, 491487, 1325546, 3409347, 8430246, 20164223, 46880424, 106350942, 236147828, 514553154, 1102562952, 2327442276, 4847463408, 9974081130, 20297335340
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-9,-10,30,6,-41,-6,30,10,-9,-6,-1).
-
R:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( ((1+2*x)/(1-x-x^2))^6 )); // G. C. Greubel, Apr 08 2021
-
Table[((744+2990*n+2895*n^2+1925*n^3+825*n^4+125*n^5)*LucasL[n+2] +3*(256+390*n + 505*n^2+425*n^3+175*n^4+25*n^5)*LucasL[n+1])/(5^2*5!), {n,0,40}] (* G. C. Greubel, Apr 08 2021 *)
-
def A060932_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( ((1+2*x)/(1-x-x^2))^6 ).list()
A060932_list(40) # G. C. Greubel, Apr 08 2021
A061188
Triangle of coefficients of polynomials (rising powers) useful for convolutions of A000032(n+1), n >= 0 (Lucas numbers).
Original entry on oeis.org
0, 1, 5, 20, 45, 25, 240, 350, 600, 250, 3000, 9250, 13125, 8750, 1875, 93000, 373750, 361875, 240625, 103125, 15625, 3690000, 11077500, 12818750, 8531250, 4156250, 1181250, 125000, 116550000, 312037500
Offset: 0
Triangle begins:
{0};
{1,5};
{20,45,25};
{240,350,600,250};
...;
pL1(2,n) = 5*(4+9*n+5*n^2) = 5*(1+n)*(4+5*n).
Cf.
A061189(n, m) (companion triangle),
A060922(n, m) (Lucas convolution triangle).
A061189
Triangle of coefficients of polynomials (rising powers) useful for convolutions of A000204(n+1), n >= 0 (Lucas numbers).
Original entry on oeis.org
1, 2, 0, -10, 15, 25, 30, 475, 450, 125, 6000, 8500, 6250, 5000, 1250, 96000, 146250, 189375, 159375, 65625, 9375, 180000, 5355000, 8881250, 5578125, 2515625, 721875, 78125, 44100000, 254700000, 341775000
Offset: 0
Triangle begins:
{1};
{2,0};
{-10,15,25};
{30,475,450,125};
...;
pL2(2,n) = 5*(-2+3*n+5*n^2) = 5*(1+n)*(-2+5*n).
L(2; n) := A060922(n+2,2) = A060929(n) = (1+n)*((4+5*n)*L(n+2)+(-2+5*n)*L(n+1))/(2*5).
Cf.
A061188(n, m) (companion triangle),
A060922(n, m) (Lucas convolution triangle).
Showing 1-10 of 11 results.
Comments