cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A060922 Convolution triangle for Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 3, 1, 4, 6, 1, 7, 17, 9, 1, 11, 38, 39, 12, 1, 18, 80, 120, 70, 15, 1, 29, 158, 315, 280, 110, 18, 1, 47, 303, 753, 905, 545, 159, 21, 1, 76, 566, 1687, 2568, 2120, 942, 217, 24, 1, 123, 1039, 3612, 6666, 7043, 4311
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

In the language of Shapiro et al. (see A053121 for the reference) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. G.f. for row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) is (1+2*z)/(1-(1+x)*z-(1+2*x)*z^2).
Row sums give A060925. Column sequences (without leading zeros) are, for m=0..6: A000032(n+1)= A000204(n+1) (Lucas), A004799(n+1), A060929-33.
Bisection of this triangle gives triangles A060923 (even part) and A060924 (odd part).
For the m-th column sequence (without leading zeros) one has: a(n+m,m)= (pL1(m,n)*L(n+2)+pL2(m,n)*L(n+1))/(m!*5^m), m >= 0, with the Lucas numbers L(n)=A000032(n), n >= 0 and the row polynomials pL1(n,x) := sum(A061188(n,m)*x^n,m=0..n) and pL2(n,x) := sum(A061189(n,m)*x^m,m=0..n).
Riordan array ((1+2*x)/(1-x-x^2), x*(1+2*x)/(1-x-x^2)). - Philippe Deléham, Jan 21 2014
T is the convolution triangle of A000204 (see A357368). - Peter Luschny, Oct 19 2022

Examples

			p(2,x) = 4+6*x+x^2.
Triangle begins:
1 ;
3, 1;
4, 6, 1;
7, 17, 9, 1;
11, 38, 39, 12, 1;
18, 80, 120, 70, 15, 1;
29, 158, 315, 280, 110, 18, 1;
47, 303, 753, 905, 545, 159, 21, 1;
		

Crossrefs

Cf. A000032.

Programs

Formula

a(n, m)=((n-m+1)*a(n, m-1)+2*(2*n-m)*a(n-1, m-1)+4*(n-1)*a(n-2, m-1))/(5*m), n >= m >= 1, a(n, 0)= A000204(n+1)= A000032(n+1).
G.f. for m-th column: ((1+2*x)/(1-x-x^2))* ((x*(1+2*x))/(1-x-x^2))^m.
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 21 2014

Extensions

Example improved by Philippe Deléham, Jan 21 2014

A060930 Third convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 12, 70, 280, 905, 2568, 6666, 16220, 37580, 83780, 181074, 381488, 786715, 1593160, 3176210, 6246732, 12139859, 23344760, 44471340, 84005640, 157483176, 293201912, 542468100, 997906400, 1826073525
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( ((1+2*x)/(1-x-x^2))^4 )); // G. C. Greubel, Apr 08 2021
    
  • Mathematica
    Table[((25*n^3+90*n^2+95*n+6)*LucasL[n+4] -12*(5*n^2+10*n-3)*LucasL[n+2])/150, {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
  • Sage
    def A060930_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1+2*x)/(1-x-x^2))^4 ).list()
    A060930_list(40) # G. C. Greubel, Apr 08 2021

Formula

G.f.: ((1+2*x)/(1-x-x^2))^4.
a(n) = A060922(n+3, 3) (fourth column of Lucas triangle).
a(n) = (2*(25*n^3 + 60*n^2 + 35*n +24)*L(n+2) + (25*n^3 + 90*n^2 + 95*n + 6)*L(n+1))/(3!*5^2), with the Lucas numbers L(n) = A000032(n).

A060931 Fourth convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 15, 110, 545, 2120, 7043, 20965, 57560, 148545, 365045, 862224, 1970905, 4382820, 9520315, 20265665, 42385132, 87284120, 177293730, 355738710, 705980760, 1387213926, 2701362950, 5217448800, 10001654350
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( ((1+2*x)/(1-x-x^2))^5 )); // G. C. Greubel, Apr 08 2021
    
  • Mathematica
    Table[((n+1)/120)*((5*n^3+5*n^2-10*n+72)*LucasL[n+5] + 4*(5*n^2+10*n-24)*LucasL[n+ 4]), {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
  • Sage
    def A060931_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1+2*x)/(1-x-x^2))^5 ).list()
    A060931_list(40) # G. C. Greubel, Apr 08 2021

Formula

a(n) = A060921(n+4, 4) (fifth column of Lucas triangle).
a(n) = (n+1)*( (15*n^3 +55*n^2 +50*n +24)*L(n+2) + 2*(5*n^3 +15*n^2 +10*n +24)*L(n+1))/5!, with the Lucas numbers L(n)=A000032(n).
G.f.: ((1+2*x)/(1-x-x^2))^5.

A060932 Fifth convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 18, 159, 942, 4311, 16536, 55898, 171924, 491487, 1325546, 3409347, 8430246, 20164223, 46880424, 106350942, 236147828, 514553154, 1102562952, 2327442276, 4847463408, 9974081130, 20297335340
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( ((1+2*x)/(1-x-x^2))^6 )); // G. C. Greubel, Apr 08 2021
    
  • Mathematica
    Table[((744+2990*n+2895*n^2+1925*n^3+825*n^4+125*n^5)*LucasL[n+2] +3*(256+390*n + 505*n^2+425*n^3+175*n^4+25*n^5)*LucasL[n+1])/(5^2*5!), {n,0,40}] (* G. C. Greubel, Apr 08 2021 *)
  • Sage
    def A060932_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1+2*x)/(1-x-x^2))^6 ).list()
    A060932_list(40) # G. C. Greubel, Apr 08 2021

Formula

a(n) = A060922(n+5, 5) (sixth column of Lucas triangle).
G.f.: ((1+2*x)/(1-x-x^2))^6.
a(n) = ( 25*(125*n^5 +825*n^4 +1925*n^3 +2895*n^2 +2990*n +744)*L(n+2) +(1875*n^5 +13125*n^4 +31875*n^3 +37875*n^2 +29250*n +19200)*L(n+1))/(5!*5^4), with the Lucas numbers L(n)=A000032(n).

A061189 Triangle of coefficients of polynomials (rising powers) useful for convolutions of A000204(n+1), n >= 0 (Lucas numbers).

Original entry on oeis.org

1, 2, 0, -10, 15, 25, 30, 475, 450, 125, 6000, 8500, 6250, 5000, 1250, 96000, 146250, 189375, 159375, 65625, 9375, 180000, 5355000, 8881250, 5578125, 2515625, 721875, 78125, 44100000, 254700000, 341775000
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

The row polynomials pL2(n,x) := Sum_{m=0..n} a(n,m)*x^m and pL1(n,x) := Sum_{m=0..n} A061188(n,m)*x^m appear in the k-fold convolution of the Lucas numbers L(n+1) = A000204(n+1) = A000032(n+1), n >= 0, as follows: L(k; n) := A060922(n+k,k) = (pL1(k,n)*L(n+2)+pL2(k,n)*L(n+1))/(k!*5^k).

Examples

			Triangle begins:
  {1};
  {2,0};
  {-10,15,25};
  {30,475,450,125};
  ...;
pL2(2,n) = 5*(-2+3*n+5*n^2) = 5*(1+n)*(-2+5*n).
L(2; n) := A060922(n+2,2) = A060929(n) = (1+n)*((4+5*n)*L(n+2)+(-2+5*n)*L(n+1))/(2*5).
		

Crossrefs

Cf. A061188(n, m) (companion triangle), A060922(n, m) (Lucas convolution triangle).

A060933 Sixth convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 21, 217, 1498, 7910, 34566, 131446, 449732, 1416513, 4174765, 11651717, 31075422, 79751854, 198036146, 477899790, 1124785648, 2589534248, 5845989156, 12968091584, 28316428700, 60953528230, 129515454530, 271955244610, 564879359940, 1161646929275, 2366938010983, 4781794056543
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( ((1+2*x)/(1-x-x^2))^7 )); // G. C. Greubel, Apr 08 2021
    
  • Maple
    m:= 40; S:= series( ((1+2*x)/(1-x-x^2))^7, x, m+1);
    seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Apr 08 2021
  • Mathematica
    Table[(n+1)(2(100n^5+845n^4+2480n^3+4345n^2+5910n+2952)LucasL[n+2]+(125n^5+ 1030n^4+2995n^3+5930n^2+8280n+288)LucasL[n+1])/18000,{n,0,30}] (* Harvey P. Dale, Aug 13 2013 *)
    CoefficientList[Series[((1+2x)/(1-x-x^2))^7, {x,0,30}], x] (* Vincenzo Librandi, Aug 13 2013 *)
  • Sage
    def A060930_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1+2*x)/(1-x-x^2))^7 ).list()
    A060930_list(40) # G. C. Greubel, Apr 08 2021

Formula

G.f.: ( (1+2*x) / (1-x-x^2) )^7.
a(n) = A060922(n+6, 6) (seventh column of Lucas triangle).
a(n) = (n+1)*(2*(100*n^5 +845*n^4 +2480*n^3 +4345*n^2 +5910*n +2952)*L(n+2) + (125*n^5 +1030*n^4 +2995*n^3 +5930*n^2 +8280*n +288)*L(n+1))/(6!*5^2), with the Lucas numbers L(n)=A000032(n).
Showing 1-6 of 6 results.