cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A067979 Triangle read by rows of incomplete convolutions of Lucas numbers L(n+1) = A000204(n+1), n>=0.

Original entry on oeis.org

1, 3, 6, 4, 13, 17, 7, 19, 31, 38, 11, 32, 48, 69, 80, 18, 51, 79, 107, 140, 158, 29, 83, 127, 176, 220, 274, 303, 47, 134, 206, 283, 360, 432, 519, 566, 76, 217, 333, 459, 580, 706, 822, 963, 1039, 123, 351, 539, 742, 940, 1138, 1341, 1529, 1757, 1880, 199, 568, 872, 1201, 1520, 1844, 2163, 2492, 2796, 3165, 3364
Offset: 0

Views

Author

Wolfdieter Lang, Feb 15 2002

Keywords

Comments

The diagonals d>=0 (d=0: main diagonal) give convolutions of Lucas numbers L(n+1) := A000204(n+1), n>=0, with those with d-shifted index: a(d+n,d) = Sum_{k=0..n} L(k+1)*L(d+n+1-k).
The diagonals give A004799(n-1), A067980-7 for d=n-m= 0..8, respectively. Row sums give A067989.
The row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) are generated by A(x*z)*(A(z)-x*A(x*z))/(1-x), with A(x) := (1+2*x)/(1-x-x^2) (g.f. Lucas L(n+1), n>=0).

Examples

			Triangle begins:
  {1};
  {3,6};
  {4,13,17};     p(2,x) = 4+13*x+17*x^2
  {7,19,31,38};
  ...
		

Crossrefs

Cf. A067990 (triangle with rows read backwards).

Programs

  • Mathematica
    Table[Sum[LucasL[k + 1] LucasL[n - k + 1], {k, 0, m}], {n, 0, 10}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 11 2016 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(m=0,k,(fibonacci(m+2) + fibonacci(m))*(fibonacci(n-m+2) + fibonacci(n-m))), ", "))) \\ G. C. Greubel, Dec 17 2017

Formula

a(n, m) = Sum_{k=0..m} L(k+1)*L(n-k+1), n>=m>=0, else 0.
a(n, m) = (m+1)*L(n-m+1)*F(m) + ((m+1)*L(n-m+1) + m*L(n-m))*F(m+1), n>=m>=0, with F(n) := A000045(n) (Fibonacci) and L(n) := A000032(n) (Lucas).
G.f. for diagonals d= n-m>=0: (x^d)*(L(d+1)+L(d)*x)*(1-2*x)/(1-x-x^2)^2.
a(n, m) = -(-1)^m*F(n-2*m-1) + m*L(n+2)+F(n+3), with F(-n) = (-1)^(n+1) * F(n), hence a(n, m) = -5*A067330(n, m)+2*(m+1)*L(n+2), n>=m>=0. - Ehren Metcalfe, Apr 11 2016

A067990 Triangle A067979 with rows read backwards.

Original entry on oeis.org

1, 6, 3, 17, 13, 4, 38, 31, 19, 7, 80, 69, 48, 32, 11, 158, 140, 107, 79, 51, 18, 303, 274, 220, 176, 127, 83, 29, 566, 519, 432, 360, 283, 206, 134, 47, 1039, 963, 822, 706, 580, 459, 333, 217, 76, 1880, 1757, 1529, 1341, 1138, 940, 742, 539, 351, 123, 3364, 3165, 2796, 2492, 2163, 1844, 1520, 1201
Offset: 0

Views

Author

Wolfdieter Lang, Feb 15 2002

Keywords

Comments

The column m (without leading 0's) gives the convolution of Lucas numbers {L(n+1) := A000204(n+1)}, n>=0, with those with m-shifted index: a(n+m,m)=sum(L(k+1)*L(m+n+1-k),k=0..n), n>=0,m=0,1,...
The columns give A004799(n-1), A067980-7 for m= 0..8, respectively. Row sums give A067989.
The row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) are generated by A(z)*(A(z)-x*A(x*z))/(1-x), with A(x) := (1+2*x)/(1-x-x^2) (g.f. for Lucas {L(n+1)}).

Examples

			{1}; {6,3}; {17,13,4}; {38,31,19,7}; ...; p(2,x)=17+13*x+4*x^2.
		

Programs

  • Mathematica
    Reverse /@ Table[Sum[LucasL[k + 1] LucasL[n - k + 1], {k, 0, m}], {n, 0, 11}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 11 2016 *)

Formula

a(n, m)=A067330(n, n-m), n>=m>=0, else 0.
a(n, m)=(n-m+1)*L(m+1)*F(n-m)+((n-m+1)*L(m+1)+(n-m)*L(m))*F(n-m+1), n>=m>=0, else 0; with F(n) := A000045(n)(Fibonacci) and L(n) := A000032(n) (Lucas).
G.f. for column m=0, 1, ...: (x^m)*(L(m+1)+L(m)*x)*(1+2*x)/(1-x-x^2)^2.
a(n, m) = -(-1)^m*F(n-2*m+1)-m*L(n+2)+n*L(n+2)+F(n+3), with F(-n) = (-1)^(n+1)*F(n), hence a(n, m) = -5*A067418(n, m)+2*(n-m+1)*L(n+2), n>=m>=0. - Ehren Metcalfe, Apr 11 2016

A060922 Convolution triangle for Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 3, 1, 4, 6, 1, 7, 17, 9, 1, 11, 38, 39, 12, 1, 18, 80, 120, 70, 15, 1, 29, 158, 315, 280, 110, 18, 1, 47, 303, 753, 905, 545, 159, 21, 1, 76, 566, 1687, 2568, 2120, 942, 217, 24, 1, 123, 1039, 3612, 6666, 7043, 4311
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

In the language of Shapiro et al. (see A053121 for the reference) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. G.f. for row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) is (1+2*z)/(1-(1+x)*z-(1+2*x)*z^2).
Row sums give A060925. Column sequences (without leading zeros) are, for m=0..6: A000032(n+1)= A000204(n+1) (Lucas), A004799(n+1), A060929-33.
Bisection of this triangle gives triangles A060923 (even part) and A060924 (odd part).
For the m-th column sequence (without leading zeros) one has: a(n+m,m)= (pL1(m,n)*L(n+2)+pL2(m,n)*L(n+1))/(m!*5^m), m >= 0, with the Lucas numbers L(n)=A000032(n), n >= 0 and the row polynomials pL1(n,x) := sum(A061188(n,m)*x^n,m=0..n) and pL2(n,x) := sum(A061189(n,m)*x^m,m=0..n).
Riordan array ((1+2*x)/(1-x-x^2), x*(1+2*x)/(1-x-x^2)). - Philippe Deléham, Jan 21 2014
T is the convolution triangle of A000204 (see A357368). - Peter Luschny, Oct 19 2022

Examples

			p(2,x) = 4+6*x+x^2.
Triangle begins:
1 ;
3, 1;
4, 6, 1;
7, 17, 9, 1;
11, 38, 39, 12, 1;
18, 80, 120, 70, 15, 1;
29, 158, 315, 280, 110, 18, 1;
47, 303, 753, 905, 545, 159, 21, 1;
		

Crossrefs

Cf. A000032.

Programs

Formula

a(n, m)=((n-m+1)*a(n, m-1)+2*(2*n-m)*a(n-1, m-1)+4*(n-1)*a(n-2, m-1))/(5*m), n >= m >= 1, a(n, 0)= A000204(n+1)= A000032(n+1).
G.f. for m-th column: ((1+2*x)/(1-x-x^2))* ((x*(1+2*x))/(1-x-x^2))^m.
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 21 2014

Extensions

Example improved by Philippe Deléham, Jan 21 2014

A060929 Second convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 9, 39, 120, 315, 753, 1687, 3612, 7470, 15040, 29634, 57366, 109421, 206115, 384105, 709152, 1298613, 2360943, 4264835, 7659870, 13686456, 24340184, 43102644, 76031100, 133636825, 234116493, 408900987
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,9,39,120,315,753]; [n le 6 select I[n] else 3*Self(n-1) - 5*Self(n-3) + 3*Self(n-5) + Self(n-6): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    CoefficientList[Series[((1 + 2*x)/(1 - x - x^2))^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3,0,-5,0,3,1}, {1,9,39,120,315,753}, 30] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    x='x+O('x^30); Vec(((1+2*x)/(1-x-x^2))^3) \\ G. C. Greubel, Dec 21 2017
    

Formula

G.f.: ((1+2*x)/(1-x-x^2))^3.
a(n) = A060922(n+2, 2) (third column of Lucas triangle).
a(n) = (n+1)*((5*n+4)*L(n+2) + (5*n-2)*L(n+1))/10, n >= 1, with the Lucas numbers L(n)=A000032(n)=A000204(n), n >= 1.

A060930 Third convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 12, 70, 280, 905, 2568, 6666, 16220, 37580, 83780, 181074, 381488, 786715, 1593160, 3176210, 6246732, 12139859, 23344760, 44471340, 84005640, 157483176, 293201912, 542468100, 997906400, 1826073525
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( ((1+2*x)/(1-x-x^2))^4 )); // G. C. Greubel, Apr 08 2021
    
  • Mathematica
    Table[((25*n^3+90*n^2+95*n+6)*LucasL[n+4] -12*(5*n^2+10*n-3)*LucasL[n+2])/150, {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
  • Sage
    def A060930_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1+2*x)/(1-x-x^2))^4 ).list()
    A060930_list(40) # G. C. Greubel, Apr 08 2021

Formula

G.f.: ((1+2*x)/(1-x-x^2))^4.
a(n) = A060922(n+3, 3) (fourth column of Lucas triangle).
a(n) = (2*(25*n^3 + 60*n^2 + 35*n +24)*L(n+2) + (25*n^3 + 90*n^2 + 95*n + 6)*L(n+1))/(3!*5^2), with the Lucas numbers L(n) = A000032(n).

A060931 Fourth convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 15, 110, 545, 2120, 7043, 20965, 57560, 148545, 365045, 862224, 1970905, 4382820, 9520315, 20265665, 42385132, 87284120, 177293730, 355738710, 705980760, 1387213926, 2701362950, 5217448800, 10001654350
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( ((1+2*x)/(1-x-x^2))^5 )); // G. C. Greubel, Apr 08 2021
    
  • Mathematica
    Table[((n+1)/120)*((5*n^3+5*n^2-10*n+72)*LucasL[n+5] + 4*(5*n^2+10*n-24)*LucasL[n+ 4]), {n, 0, 40}] (* G. C. Greubel, Apr 08 2021 *)
  • Sage
    def A060931_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1+2*x)/(1-x-x^2))^5 ).list()
    A060931_list(40) # G. C. Greubel, Apr 08 2021

Formula

a(n) = A060921(n+4, 4) (fifth column of Lucas triangle).
a(n) = (n+1)*( (15*n^3 +55*n^2 +50*n +24)*L(n+2) + 2*(5*n^3 +15*n^2 +10*n +24)*L(n+1))/5!, with the Lucas numbers L(n)=A000032(n).
G.f.: ((1+2*x)/(1-x-x^2))^5.

A060932 Fifth convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 18, 159, 942, 4311, 16536, 55898, 171924, 491487, 1325546, 3409347, 8430246, 20164223, 46880424, 106350942, 236147828, 514553154, 1102562952, 2327442276, 4847463408, 9974081130, 20297335340
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( ((1+2*x)/(1-x-x^2))^6 )); // G. C. Greubel, Apr 08 2021
    
  • Mathematica
    Table[((744+2990*n+2895*n^2+1925*n^3+825*n^4+125*n^5)*LucasL[n+2] +3*(256+390*n + 505*n^2+425*n^3+175*n^4+25*n^5)*LucasL[n+1])/(5^2*5!), {n,0,40}] (* G. C. Greubel, Apr 08 2021 *)
  • Sage
    def A060932_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1+2*x)/(1-x-x^2))^6 ).list()
    A060932_list(40) # G. C. Greubel, Apr 08 2021

Formula

a(n) = A060922(n+5, 5) (sixth column of Lucas triangle).
G.f.: ((1+2*x)/(1-x-x^2))^6.
a(n) = ( 25*(125*n^5 +825*n^4 +1925*n^3 +2895*n^2 +2990*n +744)*L(n+2) +(1875*n^5 +13125*n^4 +31875*n^3 +37875*n^2 +29250*n +19200)*L(n+1))/(5!*5^4), with the Lucas numbers L(n)=A000032(n).

A060933 Sixth convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 21, 217, 1498, 7910, 34566, 131446, 449732, 1416513, 4174765, 11651717, 31075422, 79751854, 198036146, 477899790, 1124785648, 2589534248, 5845989156, 12968091584, 28316428700, 60953528230, 129515454530, 271955244610, 564879359940, 1161646929275, 2366938010983, 4781794056543
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( ((1+2*x)/(1-x-x^2))^7 )); // G. C. Greubel, Apr 08 2021
    
  • Maple
    m:= 40; S:= series( ((1+2*x)/(1-x-x^2))^7, x, m+1);
    seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Apr 08 2021
  • Mathematica
    Table[(n+1)(2(100n^5+845n^4+2480n^3+4345n^2+5910n+2952)LucasL[n+2]+(125n^5+ 1030n^4+2995n^3+5930n^2+8280n+288)LucasL[n+1])/18000,{n,0,30}] (* Harvey P. Dale, Aug 13 2013 *)
    CoefficientList[Series[((1+2x)/(1-x-x^2))^7, {x,0,30}], x] (* Vincenzo Librandi, Aug 13 2013 *)
  • Sage
    def A060930_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1+2*x)/(1-x-x^2))^7 ).list()
    A060930_list(40) # G. C. Greubel, Apr 08 2021

Formula

G.f.: ( (1+2*x) / (1-x-x^2) )^7.
a(n) = A060922(n+6, 6) (seventh column of Lucas triangle).
a(n) = (n+1)*(2*(100*n^5 +845*n^4 +2480*n^3 +4345*n^2 +5910*n +2952)*L(n+2) + (125*n^5 +1030*n^4 +2995*n^3 +5930*n^2 +8280*n +288)*L(n+1))/(6!*5^2), with the Lucas numbers L(n)=A000032(n).
Showing 1-8 of 8 results.