A060932 Fifth convolution of Lucas numbers A000032(n+1), n >= 0.
1, 18, 159, 942, 4311, 16536, 55898, 171924, 491487, 1325546, 3409347, 8430246, 20164223, 46880424, 106350942, 236147828, 514553154, 1102562952, 2327442276, 4847463408, 9974081130, 20297335340
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-9,-10,30,6,-41,-6,30,10,-9,-6,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( ((1+2*x)/(1-x-x^2))^6 )); // G. C. Greubel, Apr 08 2021 -
Mathematica
Table[((744+2990*n+2895*n^2+1925*n^3+825*n^4+125*n^5)*LucasL[n+2] +3*(256+390*n + 505*n^2+425*n^3+175*n^4+25*n^5)*LucasL[n+1])/(5^2*5!), {n,0,40}] (* G. C. Greubel, Apr 08 2021 *)
-
Sage
def A060932_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( ((1+2*x)/(1-x-x^2))^6 ).list() A060932_list(40) # G. C. Greubel, Apr 08 2021