A060947 Intrinsic 10-palindromes: n is an intrinsic k-palindrome if it is a k-digit palindrome in some base.
513, 561, 585, 633, 645, 693, 717, 765, 771, 819, 843, 891, 903, 951, 975, 1023, 19684, 20008, 20332, 20440, 20764, 21088, 21196, 21520, 21844, 21880, 22204, 22528, 22636, 22960, 23284, 23392, 23716, 24040, 24076, 24400, 24724, 24832
Offset: 1
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
testQ[n_, k_] := For[b = 2, b <= Ceiling[(n-1)^(1/(k-1))], b++, d = IntegerDigits[n, b]; If[Length[d] == k && d == Reverse[d], Return[True]]]; n0[k_] := 2^(k-1) + 1; Reap[Do[If[testQ[n, 10] === True, Print[n, " ", FromDigits[d], " b = ", b]; Sow[n]], {n, n0[10], 25000}]][[2, 1]] (* Jean-François Alcover, Nov 07 2014 *)
Comments