A060964 Table by antidiagonals where T(n,k) = n*T(n,k-1) - T(n,k-2) with T(n,0) = 2 and T(n,1) = n.
2, 0, 2, -2, 1, 2, 0, -1, 2, 2, 2, -2, 2, 3, 2, 0, -1, 2, 7, 4, 2, -2, 1, 2, 18, 14, 5, 2, 0, 2, 2, 47, 52, 23, 6, 2, 2, 1, 2, 123, 194, 110, 34, 7, 2, 0, -1, 2, 322, 724, 527, 198, 47, 8, 2, -2, -2, 2, 843, 2702, 2525, 1154, 322, 62, 9, 2, 0, -1, 2, 2207, 10084, 12098, 6726, 2207, 488, 79, 10, 2
Offset: 0
Examples
Square array begins as: 2, 0, -2, 0, 2, 0, -2, ... 2, 1, -1, -2, -1, 1, 2, ... 2, 2, 2, 2, 2, 2, 2, ... 2, 3, 7, 18, 47, 123, 322, ... 2, 4, 14, 52, 194, 724, 2702, ... 2, 5, 23, 110, 527, 2525, 12098, ...
Links
- G. C. Greubel, Antidiagonals n = 0..100, flattened
Crossrefs
Programs
-
GAP
T:= function(n,k) if k=0 then return 2; elif k=1 then return n; else return n*T(n,k-1) - T(n,k-2); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(k,n-k) ))); # G. C. Greubel, Jan 15 2020
-
Magma
function T(n,k) if k eq 0 then return 2; elif k eq 1 then return n; else return n*T(n, k-1) - T(n, k-2); end if; return T; end function; [T(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 15 2020
-
Maple
seq(seq( simplify(k*ChebyshevU(n-k-1, k/2) -2*ChebyshevU(n-k-2, k/2)), k=0..n), n=0..12); # G. C. Greubel, Jan 15 2020
-
Mathematica
Table[k*ChebyshevU[n-k-1, k/2] -2*ChebyshevU[n-k-2, k/2], {n,0,12}, {k,0,n} ]//Flatten
-
PARI
T(n,k) = n*polchebyshev(k-1,2,n/2) -2*polchebyshev(k-2,2,n/2); for(n=0,12, for(k=0,n, print1(T(k,n-k), ", "))) \\ G. C. Greubel, Jan 15 2020
-
Sage
[[k*chebyshev_U(n-k-1, k/2) -2*chebyshev_U(n-k-2, k/2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 15 2020
Formula
For all m, T(n, k) = T(n, |m|)*T(n, |k - m|) - T(n, |k - 2m|).
T(n, 2k) = T(n, k)^2 - 2.
T(n, 2k + 1) = T(n, k)*T(n, k + 1) - n.
T(n, 3k) = T(n, k)^3 - 3*T(n, k).
T(n, 4k) = T(n, k)^4 - 4*T(n, k)^2 + 2.
T(n, 5k) = T(n, k)^5 - 5*T(n, k)^3 + 5*T(n, k) etc.
T(n, -k) = T(n, k).
T(-n, k) = T(-n, -k) = (-1)^k * T(n, k).
T(n, k) = ( n*( ((n + sqrt(n^2 -4))/2)^k - ((n - sqrt(n^2 -4))/2)^k ) - 2*( ((n + sqrt(n^2 -4))/2)^(k-1) - ((n - sqrt(n^2 -4))/2)^(k-1) ) )/sqrt(n^2 -4).
T(n, k) = n*ChebyshevU(k-1, n/2) - 2*ChebyshevU(k-2, n/2). - G. C. Greubel, Jan 15 2020