A060968 Number of solutions to x^2 + y^2 == 1 (mod n).
1, 2, 4, 8, 4, 8, 8, 16, 12, 8, 12, 32, 12, 16, 16, 32, 16, 24, 20, 32, 32, 24, 24, 64, 20, 24, 36, 64, 28, 32, 32, 64, 48, 32, 32, 96, 36, 40, 48, 64, 40, 64, 44, 96, 48, 48, 48, 128, 56, 40, 64, 96, 52, 72, 48, 128, 80, 56, 60, 128, 60, 64, 96, 128, 48, 96, 68, 128, 96, 64, 72
Offset: 1
Examples
a(3) = 4 because the 4 solutions are (0,1), (0,2), (1,0), (2,0).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Jianing Song, Structure of the group SO(2,Z_n).
- László Tóth, Counting solutions of quadratic congruences in several variables revisited, arXiv preprint arXiv:1404.4214 [math.NT], 2014.
- László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
Programs
-
Haskell
a060968 1 = 1 a060968 n = (if p == 2 then (if e == 1 then 2 else 2^(e+1)) else 1) * (product $ zipWith (*) (map (\q -> q - 2 + mod q 4) ps'') (zipWith (^) ps'' (map (subtract 1) es''))) where (ps'', es'') = if p == 2 then (ps, es) else (ps', es') ps'@(p:ps) = a027748_row n; es'@(e:es) = a124010_row n -- Reinhard Zumkeller, Aug 05 2014
-
Mathematica
fa=FactorInteger; phi[p_,s_] := Which[Mod[p,4] == 1, p^(s-1)*(p-1), Mod[p,4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; phi[1]=1; phi[n_] := Product[phi[fa[n][[i,1]], fa[n][[i,2]]], {i, Length[fa[n]]}]; Table[phi[n], {n,1,100}]
-
PARI
a(n)=my(f=factor(n)[,1]);n*prod(i=if(n%2,1,2),#f,if(f[i]%4==1, 1-1/f[i], 1+1/f[i]))*if(n%4,1,2) \\ Charles R Greathouse IV, Apr 16 2012
Formula
Multiplicative, with a(2^e) = 2 if e = 1 or 2^(e+1) if e > 1, a(p^e) = (p-1)*p^(e-1) if p == 1 (mod 4), a(p^e) = (p+1)*p^(e-1) if p == 3 (mod 4). - David W. Wilson, Jun 19 2001
a(n) = n * (Product_{prime p|n, p == 1 (mod 4)} (1 - 1/p)) * (Product_{prime p|n, p == 3 (mod 4)} (1 + 1/p)) * (1 + [4|n]) where "[ ]" is the Iverson bracket. - Ola Veshta (olaveshta(AT)my-deja.com), May 18 2001
Sum_{k=1..n} a(k) ~ c * n^2 + O(n*log(n)), where c = 5/(8*G) = 0.682340..., where G is Catalan's constant (A006752) (Tóth, 2014). - Amiram Eldar, Oct 18 2022
Comments