cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060973 a(2*n+1) = a(n+1)+a(n), a(2*n) = 2*a(n), with a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32
Offset: 1

Views

Author

Henry Bottomley, May 09 2001

Keywords

Examples

			a(6) = 2*a(3) = 2*1 = 2.
a(7) = a(3) + a(4) = 1 + 2 = 3.
		

Crossrefs

Programs

  • Maple
    A060973 := proc(n)
        option remember;
        if n <= 2 then
            return n-1;
        fi;
        if n mod 2 = 0 then
            2*procname(n/2)
        else
            procname((n-1)/2)+procname((n+1)/2);
        fi;
    end proc:  # R. J. Mathar Nov 30 2014
  • Mathematica
    nn = 77; Array[Set[a[#], # - 1] &, 2]; Do[Set[a[i], If[EvenQ[i], 2 a[i/2], a[# + 1] + a[#] &[(i - 1)/2]]], {i, 3, nn}]; Array[a, nn] (* Michael De Vlieger, Mar 22 2022 *)
  • PARI
    a(n) = my(i=logint(n,2)-1); if(bittest(n,i), n - 2<Kevin Ryde, Aug 19 2022
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A060973(n): return n-1 if n <= 2 else A060973(n//2) + A060973((n+1)//2) # Chai Wah Wu, Mar 08 2022
    

Formula

a(n) = n - A006165(n) = A006165(n) - A053646(n) = (n - A053646(n))/2 [for n > 1].
If n = 2*(2^m) + k with 0 <= k <= 2^m, then a(n) = 2^m; if n = 3*(2^m) + k with 0 <= k <= 2^m, then a(n) = 2^m + k.
G.f.: -x/(1 - x) + x/(1 - x)^2 * ( 1 + Sum_{k >= 0} t^2*(t - 1) ), t = x^(2^k). - Ralf Stephan, Sep 12 2003
Conjectures from Peter Bala, Aug 03 2022: (Start)
a(n - a(n)) = a(n - a(n - a(n - a(n)))).
If b(n) = a(a(n)) then b(n - b(n)) = b(n - b(n - b(n - b(n)))) for n >= 2. (End)
Sum_{n>=2} 1/a(n)^2 = Pi^2/6 + 2. - Amiram Eldar, Sep 08 2022