cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062353 Primes of the form bbbbba... where a and b are digits.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 113, 223, 227, 229, 331, 337, 443, 449, 557, 661, 773, 881, 883, 887, 991, 997, 1117, 2221, 3331, 4441, 4447, 5557, 6661, 8887, 11113, 11117, 11119, 22229
Offset: 1

Views

Author

Amarnath Murthy, Jun 23 2001

Keywords

Comments

Number of terms of n digits: 4, 21, 16, 8, 9, 8, 2, 8, 7, 3, 4, 5, 2, 2, 4, 0, 3, 4, 2, 3, 2, 2, 4, 1, 0, ..., . - Robert G. Wilson v, May 29 2011

Examples

			4441 is a member where a=1 and b = 4.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[ Union@ Flatten@ Table[ FromDigits@ Join[ Table[b, {n - 1}], {a}], {b, 9}, {a, {1, 3, 7, 9}}], PrimeQ]; f[1] = {2, 3, 5, 7}; Array[f, 5] // Flatten (* Robert G. Wilson v, May 29 2011 *)
  • PARI
    print1("2, 3, 5, 7");for(n=2,20,forstep(k=10^n\9-1,10^n-9,10^n\9-1,for(m=k+1,k+9,if(isprime(m),print1(", "m))))) \\ Charles R Greathouse IV, May 29 2011

Extensions

More terms from Jason Earls, Jun 26 2001
Corrected and extended by Dean Hickerson, Jul 10 2001

A383978 Primes with at least two identical trailing digits.

Original entry on oeis.org

11, 199, 211, 233, 277, 311, 433, 499, 577, 599, 677, 733, 811, 877, 911, 977, 1033, 1277, 1399, 1433, 1499, 1511, 1699, 1733, 1777, 1811, 1877, 1933, 1999, 2011, 2099, 2111, 2311, 2333, 2377, 2399, 2411, 2477, 2633, 2677, 2699, 2711, 2777, 2833, 2999, 3011, 3299
Offset: 1

Views

Author

Stefano Spezia, May 16 2025

Keywords

Crossrefs

Subsequence of A050758.
Cf. A061022 (variant).

Programs

  • Maple
    select(isprime, [seq(seq(i*100 + j*11, j = [1,3,7,9]),i=0..100)]); # Robert Israel, May 17 2025
  • Mathematica
    Select[Prime[Range[500]],Part[d=IntegerDigits[#],l=IntegerLength[#]]==Part[d,l-1] &]
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        yield from filter(isprime, (i+k for i in count(0, 100) for k in (11, 33, 77, 99)))
    print(list(islice(agen(), 50))) # Michael S. Branicky, May 20 2025
Showing 1-2 of 2 results.