A061071 Number of distinct values in the list of number of divisors, d(j), j=1...n.
1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1
Keywords
References
- B. Spearman and K. S. Williams, Handbook of Estimates in the Theory of Numbers, Carleton Math. Lecture Note Series No. 14, 1975; see p. 2.2.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- P. Erdős and L. Mirsky, The distribution of values of the divisor function d(n), Proc. London Math. Soc. 2 (1952), pp. 257-271.
Crossrefs
Cf. A000005.
Programs
-
Mathematica
a[n_] = Length[Union[Table[DivisorSigma[0, w], {w, 1, n}]]]
-
PARI
v=[];vector(100,n,t=numdiv(n);v=vecsort(concat(v,t),,8);#v) \\ Charles R Greathouse IV, Dec 12 2012
-
Python
from sympy import divisor_count def A061071(n): return len({divisor_count(i) for i in range(1,n+1)}) # Chai Wah Wu, Sep 08 2023
Formula
Erdős & Mirsky show that log a(n) ~ k sqrt(log x)/log log x where k = Pi sqrt(8/3). - Charles R Greathouse IV, Dec 07 2012