A061101 Squares with digital root 7.
16, 25, 169, 196, 484, 529, 961, 1024, 1600, 1681, 2401, 2500, 3364, 3481, 4489, 4624, 5776, 5929, 7225, 7396, 8836, 9025, 10609, 10816, 12544, 12769, 14641, 14884, 16900, 17161, 19321, 19600, 21904, 22201, 24649, 24964, 27556, 27889, 30625
Offset: 1
Examples
1681=41^2, 1+6+8+1 = 16, 1+6 =7, 4624=68^2, 4+6+2+4 = 16, 1+6 =7.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- Amarnath Murthy & Charles Ashbacher, Fabricating a perfect square with a given valid digit sum, in Generalized Partitions and New Ideas On Number Theory and Smarandache Sequences, pp 154-156.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Cf. A056991.
Programs
-
Maple
seq(seq((9*i+j)^2, j=4..5), i=0..100); # Robert Israel, Jan 31 2017
-
PARI
a(n)=(n\2*9-4*(-1)^n)^2 \\ Charles R Greathouse IV, Sep 21 2012
Formula
Conjecture: a(n)=(9*n-8)^2/4 for n even. a(n)=(9*n-1)^2/4 for n odd. G.f.: x*(16+9*x+112*x^2+9*x^3+16*x^4)/((1-x)^3*(1+x)^2). - Colin Barker, Apr 21 2012
Conjecture is true, because x^2 == 7 (mod 9) if and only if x == 4 or 5 (mod 9). - Robert Israel, Jan 31 2017
Extensions
More terms from Harry J. Smith, Jul 18 2009