A061169 Third column of Lucas bisection triangle (even part).
1, 39, 315, 1687, 7470, 29634, 109421, 384105, 1298613, 4264835, 13686456, 43102644, 133636825, 408900987, 1237114335, 3706490479, 11010661266, 32463981270, 95081107013, 276820695645, 801633669561
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2374
- Geoffrey B. Campbell, Vector Partition Identities for 2D, 3D and nD Lattices, arXiv:2302.01091 [math.CO], 2023.
Programs
-
Mathematica
CoefficientList[Series[(1 + x) (1 + 29 x - 35 x^2 + 12 x^3)/(1 - 3 x + x^2)^3, {x, 0, 20}], x] (* Michael De Vlieger, Feb 06 2023 *)
Formula
a(n) = A060923(n+2, 2).
G.f.: (1+x)*(1+29*x-35*x^2+12*x^3)/(1-3*x+x^2)^3.
Comments