cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061172 Third column of Lucas bisection triangle (odd part).

Original entry on oeis.org

9, 120, 753, 3612, 15040, 57366, 206115, 709152, 2360943, 7659870, 24340184, 76031100, 234116493, 712166952, 2143779645, 6394719216, 18923041360, 55601888562, 162350117703, 471371537040, 1361642740059
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator of g.f. is row polynomial Sum_{m=0..4} A061187(2,m)*x^m.

Crossrefs

Programs

  • Magma
    I:=[9, 120, 753, 3612, 15040, 57366]; [n le 6 select I[n] else 9*Self(n-1)-30*Self(n-2)+45*Self(n-3)-30*Self(n-4)+9*Self(n-5) - Self(n-6): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    CoefficientList[Series[(3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3, {x,0,50}], x] (* or *) LinearRecurrence[{9,-30,45,-30,9,-1}, {9, 120, 753, 3612, 15040, 57366}, 30] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    x='x+O('x^30); Vec((3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3) \\ G. C. Greubel, Dec 21 2017
    

Formula

a(n) = A060924(n+2, 2).
G.f.: (3-2*x)*(4*x^3-9*x^2+15*x+3)/(1-3*x+x^2)^3.