cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061186 Staircase of coefficients of polynomials used for column g.f.s of triangle A060923.

Original entry on oeis.org

1, 1, 1, 1, 11, -11, 4, 1, 30, -6, -23, 12, 1, 58, 123, -278, 193, -72, 16, 1, 95, 565, -715, -145, 601, -360, 80, 1, 141, 1590, 89, -5226, 6441, -3659, 1260, -336, 64, 1, 196, 3549, 6797, -22099, 12369, 9156, -15791, 9492
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

a(n,m) is coefficient of x^m of polynomial pLe(n,x) := (((1+x)+(3-2*x)*sqrt(x))^n + ((1+x)-(3-2*x)*sqrt(x))^n)/2 of degree n+floor(n/2)= A032766(n). pLe(n,x)= sum(binomial(n,2*j)*(1+x)^(n-2*j)*(3-2*x)^(2*j)*x^j,j=0..floor(n/2)), n >= 1; pLe(0,x)=1.
pLe(m+1,x) is the numerator polynomial of the g.f. for column m >= 0 of the triangle A060923 (even part of bisection of Lucas triangle).

Examples

			{1}; {1,1}; {1,11,-11,4}; ...; pLe(2,x)= 1+11*x-11*x^2+4*x^3.
		

Crossrefs

A061187 (companion staircase).

Formula

a(n, m)=sum(((-9/2)^j*binomial(n, 2*j)*sum((-3/2)^(k-m)*binomial(n-2*j, k)*binomial(2*j, m-k-j), k=max(0, (m-3*j))..(n-2*j))), j=0..floor(n/2)), 0<= m <= n+floor(n/2); else 0.