cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061187 Staircase of coefficients of polynomials used for column g.f.s of triangle A060924.

Original entry on oeis.org

3, -2, 6, 2, -4, 9, 39, -57, 30, -8, 12, 136, -96, -84, 104, -32, 15, 320, 293, -1260, 1155, -530, 160, -32, 18, 618, 2118, -4242, 890, 2718, -2652, 1088, -192, 21, 1057, 7224, -5037, -19208, 33383, -23793, 9534, -2632, 672
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

a(n,m) is coefficient of x^m of polynomial pLo(n+1,x) := (((1+x)+(3-2*x)*sqrt(x))^(n+1) - ((1+x)-(3-2*x)*sqrt(x))^(n+1))/(2*sqrt(x)) of degree n+1+floor(n/2)= A001651(n). pLo(n+1,x)= sum(binomial(n+1,2*j+1)*(1+x)^(n-2*j)*(3-2*x)^(2*j+1)*x^j,j=0..floor(n/2)), n >= 0.
pLo(m+1,x) appears as numerator polynomial of the g.f. for column m >= 0 of the triangle A060924 (even part of bisection of Lucas triangle).

Examples

			{3, -2}; {6, 2, -4}; {9, 39, -57, 30, -8}; ...; pLo(2, x)= 6+2*x-4*x^2= 2*(1+x)*(3-2*x).
		

Crossrefs

A061186 (companion staircase).

Formula

a(n, m)= sum(3*(-9/2)^j*binomial(n+1, 2*j+1)*sum((-3/2)^(k-m)*binomial(n-2*j, k) *binomial(2*j+1, m-k-j), k=max(0, m-3*j-1)..n-2*j), j=0..floor(n/2)), 0<= m <= n+1+floor(n/2); else 0.