A061208 Numbers which can be expressed as sum of distinct triangular numbers (A000217).
1, 3, 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1
Keywords
Examples
25 = 1 + 3 + 6 + 15
Links
- R. E. Woodrow, The Olympiad Corner, No. 198, Crux Mathematicorum, v25-n4(2002), 207-208, exercise 2.
Programs
-
Maple
gf := product(1+x^(j*(j+1)/2), j=1..100): s := series(gf, x, 200): for i from 1 to 200 do if coeff(s, x, i) > 0 then printf(`%d,`,i) fi:od:
Extensions
Corrected and extended by James Sellers, Apr 24 2001
Comments