cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061218 Least number whose number of divisors is n-th term from A014613 (numbers of form p*q*r*s, products of exactly 4 primes, counted with multiplicity).

Original entry on oeis.org

120, 360, 1260, 1680, 6300, 6720, 5040, 44100, 20160, 107520, 25200, 45360, 430080, 100800, 322560, 176400, 6881280, 181440, 226800, 27525120, 1290240, 440401920, 705600, 1632960, 1612800, 20643840, 907200, 2903040, 1587600, 82575360, 28185722880, 6451200, 112742891520
Offset: 1

Views

Author

Labos Elemer, Jun 06 2001

Keywords

Examples

			p*q*r*s = 210 is the 27th term in A014613; the smallest number with 210 divisors is 907200 = 2*2*2*2*2*2*3*3*3*3*5*5*7.
		

Crossrefs

Programs

  • Python
    from math import prod, isqrt
    from sympy import primepi, primerange, integer_nthroot, isprime, divisors, prime
    def A061218(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(x,4)[0]+1)) for b,m in enumerate(primerange(k,integer_nthroot(x//k,3)[0]+1),a) for c,r in enumerate(primerange(m,isqrt(x//(k*m))+1),b)))
        def mult_factors(n):
            if isprime(n):
                return [(n,)]
            c = []
            for d in divisors(n,generator=True):
                if 1Chai Wah Wu, Aug 17 2024

Formula

a(n) = A005179(A014613(n)).

Extensions

Corrected and extended by Michel Marcus, Sep 05 2017