cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061262 Smallest number representable as the sum of 3 triangular numbers in exactly n ways.

Original entry on oeis.org

0, 3, 12, 21, 52, 57, 91, 121, 136, 211, 192, 226, 409, 331, 367, 406, 511, 507, 886, 637, 772, 721, 871, 952, 1102, 1066, 1227, 1192, 1641, 1621, 1396, 1381, 1501, 1732, 1792, 1927, 1942, 2401, 2611, 2551, 2422, 2557, 2887, 2821, 3136, 3271, 3607, 3376
Offset: 1

Views

Author

Ed Pegg Jr, Apr 24 2001

Keywords

Comments

Fermat claimed, Euler tried, Gauss proved (July 10, 1796) that every number can be represented as a sum of three triangular numbers. I'm considering 0 as a triangular number here. If at first you do not succeed, tri + tri + tri again.
Conjecture: for n large enough, 1 < a(n)/n^2 < 2. - Benoit Cloitre, May 10 2003
Conjecture: No term a(n) with n > 2 is congruent to 0 or 3 modulo 5. - Zhi-Wei Sun, Feb 25 2015

Examples

			57 is the smallest number that can be represented by exactly 6 different triangular triple sums: {6, 6, 5}, {7, 7, 1}, {8, 5, 3}, {8, 6, 0}, {9, 3, 3}, {10, 1, 1}.
		

Crossrefs

Programs

  • Mathematica
    a = Table[ n(n + 1)/2, {n, 0, 85} ]; b = {0}; c = Table[0, {3655} ]; Do[ b = Append[b, a[[i] ] + a[[j]] + a[[k]]], {k, 1, 85}, {j, 1, k}, {i, 1, j} ]; b = Delete[b, 1]; b = Sort[b]; l = Length[b]; Do[ If[b[[n]] < 3655, c[[b[[n]] + 1]]++ ], {n, 1, l} ]; Do[ k = 1; While[ c[[k]] != n, k++ ]; Print[k - 1], {n, 1, 48} ]