A061282 Minimal number of steps to get from 0 to n by (a) adding 1 or (b) multiplying by 3. A stopping problem: begin with n and at each stage if a multiple of 3 divide by 3, otherwise subtract 1.
0, 1, 2, 2, 3, 4, 3, 4, 5, 3, 4, 5, 4, 5, 6, 5, 6, 7, 4, 5, 6, 5, 6, 7, 6, 7, 8, 4, 5, 6, 5, 6, 7, 6, 7, 8, 5, 6, 7, 6, 7, 8, 7, 8, 9, 6, 7, 8, 7, 8, 9, 8, 9, 10, 5, 6, 7, 6, 7, 8, 7, 8, 9, 6, 7, 8, 7, 8, 9, 8, 9, 10, 7, 8, 9, 8, 9, 10, 9, 10, 11, 5, 6, 7, 6, 7, 8, 7, 8, 9, 6, 7, 8, 7, 8, 9, 8, 9, 10, 7, 8
Offset: 0
Examples
a(25)=7 since 25=((0+1+1)*3+1+1)*3+1.
Links
Crossrefs
Programs
-
Haskell
c i = if i `mod` 3 == 0 then i `div` 3 else i - 1 b 0 foldCount = foldCount b sheetCount foldCount = b (c sheetCount) (foldCount + 1) a061282 n = b n 0 -- Peter Kagey, Sep 02 2015
-
Maple
a:= n-> (l-> nops(l)+add(i, i=l)-1)(convert(n, base, 3)): seq(a(n), n=0..105); # Alois P. Heinz, Jul 16 2015
-
PARI
a(n)=sumdigits(n,3)+#digits(n,3)-1 \\ Charles R Greathouse IV, Jul 16 2015
Comments