A205581 Primes p whose smallest positive primitive root (mod p) is not squarefree.
4111, 7841, 10111, 15391, 15991, 16061, 20011, 21031, 22699, 32299, 32957, 35911, 43963, 45127, 45631, 47431, 49831, 51199, 53173, 53731, 58111, 59671, 60331, 64231, 71761, 74311, 76039, 78079, 81331, 81761, 83311, 83431, 87541, 98911, 100621, 102871, 104729
Offset: 1
Keywords
Examples
4111 is in the sequence since it is prime and its smallest primitive root (mod 4111) is 12. 53173 is in the sequence since it is prime and its smallest primitive root (mod 53173) is 18.
Links
- Jianing Song, Table of n, a(n) for n = 1..1265
- Stephen D. Cohen, Tim Trudgian, On the least square-free primitive root modulo p, arXiv:1602.02440 [math.NT], 2016.
Programs
-
Mathematica
Select[Prime[Range[10000]],!SquareFreeQ[PrimitiveRoot[#]]&] (* version 7.0 *)
-
PARI
lista(nn) = forprime(p=2, nn, if (! issquarefree(lift(znprimroot(p))), print1(p, ", ")));
Comments