A061343 Number of standard shifted tableaux with n entries.
1, 1, 2, 3, 6, 12, 27, 63, 154, 398, 1055, 2970, 8503, 25651, 78483, 250487, 811802, 2723130, 9295483, 32653552, 116866283, 428464743, 1600474365, 6102119282, 23690388631, 93631999867, 376561553417, 1538997717423, 6395852269479, 26978392034357, 115628083386280, 502520979828775
Offset: 1
Examples
From _Joerg Arndt_, May 21 2016: (Start) The a(7) = 27 tableaux correspond to the following ballot sequences (dots denote zeros). ##: ballot sequence partition 01: [ . . . . . . . ] [ 7 . . . . . . ] 02: [ . . . . . . 1 ] [ 6 1 . . . . . ] 03: [ . . . . . 1 . ] [ 6 1 . . . . . ] 04: [ . . . . . 1 1 ] [ 5 2 . . . . . ] 05: [ . . . . 1 . . ] [ 6 1 . . . . . ] 06: [ . . . . 1 . 1 ] [ 5 2 . . . . . ] 07: [ . . . . 1 1 . ] [ 5 2 . . . . . ] 08: [ . . . . 1 1 1 ] [ 4 3 . . . . . ] 09: [ . . . . 1 1 2 ] [ 4 2 1 . . . . ] 10: [ . . . 1 . . . ] [ 6 1 . . . . . ] 11: [ . . . 1 . . 1 ] [ 5 2 . . . . . ] 12: [ . . . 1 . 1 . ] [ 5 2 . . . . . ] 13: [ . . . 1 . 1 1 ] [ 4 3 . . . . . ] 14: [ . . . 1 . 1 2 ] [ 4 2 1 . . . . ] 15: [ . . . 1 1 . . ] [ 5 2 . . . . . ] 16: [ . . . 1 1 . 1 ] [ 4 3 . . . . . ] 17: [ . . . 1 1 . 2 ] [ 4 2 1 . . . . ] 18: [ . . . 1 1 2 . ] [ 4 2 1 . . . . ] 19: [ . . 1 . . . . ] [ 6 1 . . . . . ] 20: [ . . 1 . . . 1 ] [ 5 2 . . . . . ] 21: [ . . 1 . . 1 . ] [ 5 2 . . . . . ] 22: [ . . 1 . . 1 1 ] [ 4 3 . . . . . ] 23: [ . . 1 . . 1 2 ] [ 4 2 1 . . . . ] 24: [ . . 1 . 1 . . ] [ 5 2 . . . . . ] 25: [ . . 1 . 1 . 1 ] [ 4 3 . . . . . ] 26: [ . . 1 . 1 . 2 ] [ 4 2 1 . . . . ] 27: [ . . 1 . 1 2 . ] [ 4 2 1 . . . . ] (End)
References
- D. E. Knuth, The Art of Computer Programming, Vol. 3 (Sorting and searching), page 71, Section 5.1.4, Exercise 21 (page 67 in the second edition).
Links
- Joerg Arndt, Table of n, a(n) for n = 1..101
- Joerg Arndt, PARI/GP script to compute terms.
- R. Srinivasan, On a theorem of Thrall in combinatorial analysis, The American Mathematical Monthly, 70(1), 1963, pp. 41-44.
- R. M. Thrall, A combinatorial problem, Michigan Math. J. 1, (1952), 81-88.
Formula
a(n) is the sum over all partitions into distinct parts of Thrall's formula (4) on page 83, see the PARI script arndt-A061343.gp. - Joerg Arndt, May 09 2013
Extensions
More terms from Joerg Arndt, May 08 2013
Comments