cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061343 Number of standard shifted tableaux with n entries.

Original entry on oeis.org

1, 1, 2, 3, 6, 12, 27, 63, 154, 398, 1055, 2970, 8503, 25651, 78483, 250487, 811802, 2723130, 9295483, 32653552, 116866283, 428464743, 1600474365, 6102119282, 23690388631, 93631999867, 376561553417, 1538997717423, 6395852269479, 26978392034357, 115628083386280, 502520979828775
Offset: 1

Views

Author

V. Reiner and D. White (reiner(AT)math.umn.edu), Jun 07 2001

Keywords

Comments

Number of ballot sequences (see A000085) where the number of occurrences of k in any prefix is strictly greater than the number of occurrences of k+1. - Joerg Arndt, May 21 2016

Examples

			From _Joerg Arndt_, May 21 2016: (Start)
The a(7) = 27 tableaux correspond to the following ballot sequences (dots denote zeros).
##:     ballot sequence          partition
01:    [ . . . . . . . ]       [ 7 . . . . . . ]
02:    [ . . . . . . 1 ]       [ 6 1 . . . . . ]
03:    [ . . . . . 1 . ]       [ 6 1 . . . . . ]
04:    [ . . . . . 1 1 ]       [ 5 2 . . . . . ]
05:    [ . . . . 1 . . ]       [ 6 1 . . . . . ]
06:    [ . . . . 1 . 1 ]       [ 5 2 . . . . . ]
07:    [ . . . . 1 1 . ]       [ 5 2 . . . . . ]
08:    [ . . . . 1 1 1 ]       [ 4 3 . . . . . ]
09:    [ . . . . 1 1 2 ]       [ 4 2 1 . . . . ]
10:    [ . . . 1 . . . ]       [ 6 1 . . . . . ]
11:    [ . . . 1 . . 1 ]       [ 5 2 . . . . . ]
12:    [ . . . 1 . 1 . ]       [ 5 2 . . . . . ]
13:    [ . . . 1 . 1 1 ]       [ 4 3 . . . . . ]
14:    [ . . . 1 . 1 2 ]       [ 4 2 1 . . . . ]
15:    [ . . . 1 1 . . ]       [ 5 2 . . . . . ]
16:    [ . . . 1 1 . 1 ]       [ 4 3 . . . . . ]
17:    [ . . . 1 1 . 2 ]       [ 4 2 1 . . . . ]
18:    [ . . . 1 1 2 . ]       [ 4 2 1 . . . . ]
19:    [ . . 1 . . . . ]       [ 6 1 . . . . . ]
20:    [ . . 1 . . . 1 ]       [ 5 2 . . . . . ]
21:    [ . . 1 . . 1 . ]       [ 5 2 . . . . . ]
22:    [ . . 1 . . 1 1 ]       [ 4 3 . . . . . ]
23:    [ . . 1 . . 1 2 ]       [ 4 2 1 . . . . ]
24:    [ . . 1 . 1 . . ]       [ 5 2 . . . . . ]
25:    [ . . 1 . 1 . 1 ]       [ 4 3 . . . . . ]
26:    [ . . 1 . 1 . 2 ]       [ 4 2 1 . . . . ]
27:    [ . . 1 . 1 2 . ]       [ 4 2 1 . . . . ]
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 3 (Sorting and searching), page 71, Section 5.1.4, Exercise 21 (page 67 in the second edition).

Crossrefs

Cf. A000085, A003121 (strict ballot sequences with partition [j, j-1, ..., 3, 2, 1]).

Formula

a(n) is the sum over all partitions into distinct parts of Thrall's formula (4) on page 83, see the PARI script arndt-A061343.gp. - Joerg Arndt, May 09 2013

Extensions

More terms from Joerg Arndt, May 08 2013