cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061400 Primes p such that there is no squarefree number between p and the next prime.

Original entry on oeis.org

2, 3, 11, 17, 59, 71, 97, 107, 149, 179, 191, 197, 227, 239, 269, 311, 347, 349, 419, 431, 521, 599, 659, 809, 827, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1277, 1319, 1427, 1447, 1451, 1487, 1607, 1619, 1663, 1667, 1787, 1871, 1931, 1949, 1997, 2027, 2087
Offset: 1

Views

Author

Labos Elemer, Jun 07 2001

Keywords

Comments

Primes in sequence A112925. - Leroy Quet, Oct 06 2005

Examples

			Between 71 and 73, the only composite is 72 = 2*2*2*3*3, not squarefree. Each of the integers between 97 and 101 has at least one squared divisor.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local p,B,j: p:=ithprime(n): B:={}: for j from 1 to p-1 do if abs(mobius(j))>0 then B:=B union {j} else B:=B fi od: B[nops(B)] end: A:=[seq(a(m),m=1..400)]: b:=proc(k) if isprime(A[k])=true then A[k] else fi end: seq(b(i),i=1..400); # Emeric Deutsch, Oct 14 2005
  • Mathematica
    Select[Prime@ Range@ 310, Count[Range[# + 1, NextPrime@ # - 1], k_ /; SquareFreeQ@ k] == 0 &] (* Michael De Vlieger, Feb 19 2017 *)
  • PARI
    { n=0; p=2; forprime (q=3, 109621, c=0; for (i=p+1, q-1, c+=issquarefree(i); if (c, break)); if (c==0, write("b061400.txt", n++, " ", p)); p=q ) } \\ Harry J. Smith, Jul 22 2009

Extensions

Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar