A342121 a(n) is the remainder when the larger of n and its binary reverse is divided by the smaller.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 9, 6, 0, 6, 4, 0, 0, 6, 0, 0, 0, 0, 0, 14, 0, 4, 13, 18, 0, 4, 0, 10, 5, 0, 17, 14, 0, 14, 12, 0, 8, 10, 0, 4, 0, 18, 12, 4, 0, 14, 0, 0, 0, 0, 0, 30, 0, 12, 21, 42, 0, 0, 33, 30, 1, 12, 21, 42, 0
Offset: 1
Examples
For n = 43, - the binary reverse of 43 ("101011" in binary) is 53 ("110101" in binary), - so a(43) = 53 mod 43 = 10.
Links
Programs
-
Mathematica
rbr[n_]:=Module[{r=IntegerReverse[n,2]},If[r>n,Mod[r,n],Mod[n,r]]]; Array[rbr,100] (* Harvey P. Dale, Mar 18 2023 *)
-
PARI
a(n, base=2) = { my (r=fromdigits(Vecrev(digits(n, base)), base)); max(n, r) % min(n, r) }
-
Python
def A342121(n): a, b = sorted([n,int(bin(n)[:1:-1],2)]) return b % a if n > 0 else 0 # Chai Wah Wu, Mar 01 2021
Comments