A061554 Square table read by antidiagonals: a(n,k) = binomial(n+k, floor(k/2)).
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 4, 4, 1, 1, 10, 10, 5, 5, 1, 1, 20, 15, 15, 6, 6, 1, 1, 35, 35, 21, 21, 7, 7, 1, 1, 70, 56, 56, 28, 28, 8, 8, 1, 1, 126, 126, 84, 84, 36, 36, 9, 9, 1, 1, 252, 210, 210, 120, 120, 45, 45, 10, 10, 1, 1, 462, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1
Offset: 0
Examples
The array starts: 1, 1, 2, 3, 6, 10, 20, 35, 70, 126, ... 1, 1, 3, 4, 10, 15, 35, 56, 126, 210, ... 1, 1, 4, 5, 15, 21, 56, 84, 210, 330, ... 1, 1, 5, 6, 21, 28, 84, 120, 330, 495, ... 1, 1, 6, 7, 28, 36, 120, 165, 495, 715, ... 1, 1, 7, 8, 36, 45, 165, 220, 715, 1001, ... 1, 1, 8, 9, 45, 55, 220, 286, 1001, 1365, ... 1, 1, 9, 10, 55, 66, 286, 364, 1365, 1820, ... 1, 1, 10, 11, 66, 78, 364, 455, 1820, 2380, ... 1, 1, 11, 12, 78, 91, 455, 560, 2380, 3060, ... Triangle (antidiagonal) version begins: 1; 1, 1; 2, 1, 1; 3, 3, 1, 1; 6, 4, 4, 1, 1; 10, 10, 5, 5, 1, 1; 20, 15, 15, 6, 6, 1, 1; 35, 35, 21, 21, 7, 7, 1, 1; 70, 56, 56, 28, 28, 8, 8, 1, 1; 126, 126, 84, 84, 36, 36, 9, 9, 1, 1; 252, 210, 210, 120, 120, 45, 45, 10, 10, 1, 1; 462, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1; ... Matrix inverse begins: 1; -1, 1; -1, -1, 1; 1, -2, -1, 1; 1, 2, -3, -1, 1; -1, 3, 3, -4, -1, 1; -1, -3, 6, 4, -5, -1, 1; 1, -4, -6, 10, 5, -6, -1, 1; 1, 4, -10, -10, 15, 6, -7, -1, 1; ... From _Paul Barry_, May 21 2009: (Start) Production matrix is 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1 (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Reed Acton, T. Kyle Petersen, Blake Shirman, and Bridget Eileen Tenner, The clairvoyant maître d', arXiv:2401.11680 [math.CO], 2024. See p. 15.
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Yidong Sun and Luping Ma, Minors of a class of Riordan arrays related to weighted partial Motzkin paths. Eur. J. Comb. 39, 157-169 (2014), Table 2.2.
Crossrefs
Programs
-
Maple
T := proc(n, k) option remember; if n = k then 1 elif k < 0 or n < 0 or k > n then 0 elif k = 0 then T(n-1, 0) + T(n-1, 1) else T(n-1, k-1) + T(n-1, k+1) fi end: for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, May 25 2021
-
Mathematica
t[n_, k_] = Binomial[n, Floor[(n+1)/2 - (-1)^(n-k)*(k+1)/2]]; Flatten[Table[t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, May 31 2011 *)
-
PARI
T(n,k)=binomial(n,(n+1)\2-(-1)^(n-k)*((k+1)\2))
Formula
As a triangle: T(n,k) = binomial(n,m) where m = floor((n+1)/2 - (-1)^(n-k)*(k+1)/2).
a(0, k) = binomial(k, floor(k/2)) = A001405(k); for n>0 T(n, k) = T(n+1, k-2) + T(n-1, k).
n-th row = M^n * V, where M = the infinite tridiagonal matrix with all 1's in the super and subdiagonals and (1,0,0,0,...) in the main diagonal. V = the infinite vector [1,0,0,0,...]. Example: (3,3,1,1,0,0,0,...) = M^3 * V. - Gary W. Adamson, Nov 04 2006
Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0) = A001405(m+n). - Philippe Deléham, Feb 26 2007
Sum_{k=0..n} T(n,k)=2^n. - Philippe Deléham, Mar 27 2007
Extensions
Entry revised by N. J. A. Sloane, Nov 22 2006
Comments