A061556 a(n) is the least k > 0 such that sigma(k!) >= n*k!.
1, 1, 3, 5, 9, 14, 23, 43, 79, 149, 263, 461, 823, 1451, 2549, 4483, 7879, 13859, 24247, 42683, 75037, 131707, 230773, 405401, 710569, 1246379, 2185021, 3831913, 6720059, 11781551, 20657677
Offset: 0
Examples
floor(sigma(842!)/842!) = 11 while floor(sigma(843!)/843!) = 12.
Links
- Achim Flammenkamp, The Multiply Perfect Numbers Page.
- Fred Helenius, Multiperfect numbers.
Programs
-
PARI
a(n)=if(n<0,0,s=1; while(sigma(s!)
Formula
a(n) = Min{w | floor(sigma(w!)/w!) = n}.
Extensions
More terms from David Wasserman, Jun 18 2002
a(1) inserted and a(21)-a(30) added by Daniel Suteu, Sep 03 2019
Comments