A061676 Triangle T(n,k) of number of ways of throwing k standard dice to produce a total of n.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 0, 6, 15, 20, 15, 6, 1, 0, 5, 21, 35, 35, 21, 7, 1, 0, 4, 25, 56, 70, 56, 28, 8, 1, 0, 3, 27, 80, 126, 126, 84, 36, 9, 1, 0, 2, 27, 104, 205, 252, 210, 120, 45, 10, 1, 0, 1, 25, 125, 305, 456, 462, 330, 165, 55, 11, 1
Offset: 1
Examples
Rows start: 1; 1,1; 1,2,1; 1,3,3,1; 1,4,6,4,1; 1,5,10,10,5,1; 0,6,15,20,15,6,1; 0,5,21,35,35,21,7,1; etc. T(8,2)=5 since 8 =2+6 =3+5 =4+4 =5+3 =6+2.
Crossrefs
Programs
-
Maple
pts := 6; # A213889 and A061676 g := 1/(1-t*z*add(z^i,i=0..pts-1)) ; for n from 1 to 13 do for k from 1 to n do coeftayl(g,z=0,n) ; coeftayl(%,t=0,k) ; printf("%d ",%) ; end do: printf("\n") ; end do: # R. J. Mathar, May 28 2025
Formula
T(n, k)=T(n-1, k-1)+T(n-2, k-1)+T(n-3, k-1)+T(n-4, k-1)+T(n-5, k-1)+T(n-6, k-1) starting with T(0, 0)=1. T(n, k)=T(7k-n, k); if n>6k or n6k-6, T(n, k)=C(7k-n-1, k-1); T([7k/2], k)=A018901(k).