cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001592 Hexanacci numbers: a(n+1) = a(n)+...+a(n-5) with a(0)=...=a(4)=0, a(5)=1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617, 15109, 29970, 59448, 117920, 233904, 463968, 920319, 1825529, 3621088, 7182728, 14247536, 28261168, 56058368, 111196417, 220567305, 437513522, 867844316, 1721441096, 3414621024
Offset: 0

Views

Author

Keywords

Comments

a(n+5) is the number of ways of throwing n with an unstated number of standard dice and so the row sum of A061676; for example a(9)=8 is the number of ways of throwing a total of 4: 4, 3+1, 2+2, 1+3, 2+1+1, 1+2+1, 1+1+2 and 1+1+1+1; if order did not distinguish partitions (i.e. the dice were indistinguishable) then this would produce A001402 instead. - Henry Bottomley, Apr 01 2002
Number of permutations (p(i)) [of the numbers 1 to n, presumably? - N. J. A. Sloane, Jan 22 2021] satisfying -k<=p(i)-i<=r, i=1..n-5, with k=1, r=5. - Vladimir Baltic, Jan 17 2005
a(n+5) is the number of compositions of n with no part greater than 6. - Vladimir Baltic, Jan 17 2005
Equivalently, for n>=0: a(n+6) is the number of binary strings with length n where at most 5 ones are consecutive, see fxtbook link below. - Joerg Arndt, Apr 08 2011

References

  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 6 of arrays A048887 and A092921 (k-generalized Fibonacci numbers).

Programs

  • Mathematica
    CoefficientList[Series[x^5/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6), {x, 0, 50}], x]
    a[0] = a[1] = a[2] = a[3] = a[4] = 0; a[5] = a[6] = 1; a[n_] := a[n] = 2 a[n - 1] - a[n - 7]; Array[a, 36]
    LinearRecurrence[{1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,1,1,1,1,1]^n*[0;0;0;0;0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • PARI
    a(n)= my(x='x, p=polrecip(1 - x - x^2 - x^3 - x^4 - x^5 - x^6)); polcoef(lift(Mod(x,p)^n),5);
    vector(31,n,a(n-1)) \\ Joerg Arndt, May 16 2021

Formula

G.f.: x^5/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6). - Simon Plouffe in his 1992 dissertation
G.f.: Sum_{n >= 0} x^(n+5) * [ Product_{k = 1..n} (k + k*x + k*x^2 + k*x^3 + k*x^4 + x^5)/(1 + k*x + k*x^2 + k*x^3 + k*x^4 + k*x^5) ]. - Peter Bala, Jan 04 2015
Another form of the g.f.: f(z) = (z^5-z^6)/(1-2*z+z^7); then a(n) = Sum_((-1)^i*binomial(n-5-6*i,i)*2^(n-5-7*i), i=0..floor((n-5)/7))-Sum_((-1)^i*binomial(n-6-6*i,i)*2^(n-6-7*i), i=0..floor((n-6)/7)) with Sum_(alpha(i), i=m..n) = 0 for m>n. - Richard Choulet, Feb 22 2010
Sum_{k=0..5*n} a(k+b)*A063260(n,k) = a(6*n+b), b>=0.
a(n) = 2*a(n-1)-a(n-7). - Vincenzo Librandi, Dec 19 2010
lim n-> oo a(n)/a(n-1) = A118427. - R. J. Mathar, Mar 11 2024

Extensions

More terms from Robert G. Wilson v, Nov 16 2000

A213887 Triangle of coefficients of representations of columns of A213743 in binomial basis.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 0, 4, 6, 4, 1, 0, 0, 3, 10, 10, 5, 1, 0, 0, 2, 12, 20, 15, 6, 1, 0, 0, 1, 12, 31, 35, 21, 7, 1, 0, 0, 0, 10, 40, 65, 56, 28, 8, 1, 0, 0, 0, 6, 44, 101, 120, 84, 36, 9, 1, 0
Offset: 0

Views

Author

Keywords

Comments

This triangle is the third array in the sequence of arrays A026729, A071675 considered as triangles.
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th row of the triangle. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213743. For example, s_1(n)=binomial(n,1)=n is the first column of A213743 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213743 for n>1, etc. In particular (see comment in A213743), in cases k=6,7,8,9 s_k(n) is A064056(n+2), A064057(n+2), A064058(n+2), A000575(n+3) respectively.
Riordan array (1,x+x^2+x^3+x^4). A186332 with additional 0 column. - Ralf Stephan, Dec 31 2013

Examples

			As a triangle, this begins
n/k.|..0....1....2....3....4....5....6....7....8....9
=====================================================
.0..|..1
.1..|..0....1
.2..|..0....1....1
.3..|..0....1....2....1
.4..|..0....1....3....3....1
.5..|..0....0....4....6....4....1
.6..|..0....0....3...10...10....5....1
.7..|..0....0....2...12...20...15....6....1
.8..|..0....0....1...12...31...35...21....7....1
.9..|..0....0....0...10...40...65...56...28....8....1
		

Crossrefs

Cf. A026729, A071675, A030528 (parts <=2), A078803 (parts <=3), A213888 (parts <=5), A061676 and A213889 (parts <=6).

Programs

  • Maple
    pts := 4; # A213887
    g := 1/(1-t*z*add(z^i,i=0..pts-1)) ;
    for n from 0 to 13 do
        for k from 0 to n do
            coeftayl(g,z=0,n) ;
            coeftayl(%,t=0,k) ;
            printf("%d ",%) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, May 28 2025

A078803 Triangular array T given by T(n,k) = number of compositions of n into k parts, each in the set {1,2,3}.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 0, 3, 3, 1, 0, 2, 6, 4, 1, 0, 1, 7, 10, 5, 1, 0, 0, 6, 16, 15, 6, 1, 0, 0, 3, 19, 30, 21, 7, 1, 0, 0, 1, 16, 45, 50, 28, 8, 1, 0, 0, 0, 10, 51, 90, 77, 36, 9, 1, 0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1, 0, 0, 0, 1, 30, 141, 266, 266, 156, 55, 11, 1, 0, 0, 0, 0, 15, 126
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2002

Keywords

Comments

Number of lattice paths from (0,0) to (n,k) using steps (1,1), (2,1), (3,1). - Joerg Arndt, Jul 05 2011
Reversing the rows produces A078802. Row sums: A000073.
Number of tribonacci binary words of length n-1 having k-1 1's. A tribonacci binary word is a binary word having no three consecutive 0's. Example: T(6,3)=7 because we have 00101,00110,01001,01010,01100,10010 and 10100. - Emeric Deutsch, Jun 16 2007
This is the Riordan array (1,x+x^2+x^3)(A071675) without its column k=0. - Vladimir Kruchinin, Feb 10 2011

Examples

			T(5,2) = 2 counts the compositions 2+3 and 3+2.
Triangle begins
  1;
  1, 1;
  1, 2, 1;
  0, 3, 3, 1;
  0, 2, 6, 4, 1;
  0, 1, 7, 10, 5, 1;
  0, 0, 6, 16, 15, 6, 1;
  0, 0, 3, 19, 30, 21, 7, 1;
  0, 0, 1, 16, 45, 50, 28, 8, 1;
  0, 0, 0, 10, 51, 90, 77, 36, 9, 1;
  0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1;
  0, 0, 0, 1, 30, 141, 266, 266, 156, 55, 11, 1;
		

References

  • Clark Kimberling, Binary words with restricted repetitions and associated compositions of integers, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 194 (2009) 141-151.

Crossrefs

Cf. A027907, A078802, A030528 (parts <=2), A213887 (parts <=4), A213888 (parts <=5), A061676 and A213889 (parts <=6).

Programs

  • Maple
    A078803 := proc(n,k) add( binomial(j,n-3*k+2*j)*binomial(k,j),j=0..k) ; end proc:
    # R. J. Mathar, Feb 22 2011
  • Mathematica
    nn=8;CoefficientList[Series[1/(1-y(x+x^2+x^3)),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Jan 08 2013 *)

Formula

T(n, k) = t(n-1, n-k), for 1<=k<=n, for n>=1, where the array t is given by A078802.
G.f.: 1/(1-t*z*(1+z+z^2))-1. - Emeric Deutsch, Mar 10 2004
T(n,k) = Sum_{j=0..k} C(j,n-3*k+2*j)*C(k,j). - Vladimir Kruchinin, Feb 10 2011

Extensions

More terms from Emeric Deutsch, Jun 16 2007

A213889 Triangle of coefficients of representations of columns of A213745 in binomial basis.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 0, 6, 15, 20, 15, 6, 1, 0, 0, 5, 21, 35, 35, 21, 7, 1, 0, 0, 4, 25, 56, 70, 56, 28, 8, 1, 0, 0, 3, 27, 80, 126, 126, 84, 36, 9, 1
Offset: 0

Views

Author

Keywords

Comments

This array is the fifth array in the sequence of arrays A026729, A071675, A213887, A213888,..., such that the first two arrays are considered as triangles.
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th row of the triangle. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213745. For example, s_1(n)=binomial(n,1)=n is the first column of A213745 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213745 for n>1, etc. In particular (see comment in A213745), in cases k=8,9 s_k(n) is A063417(n+2), A063418(n+2) respectively.

Examples

			As a triangle, this begins
n/k.|..0....1....2....3....4....5....6....7....8....9
=====================================================
.0..|..1
.1..|..0....1
.2..|..0....1....1
.3..|..0....1....2....1
.4..|..0....1....3....3....1
.5..|..0....1....4....6....4....1
.6..|..0....1....5...10...10....5....1
.7..|..0....0....6...15...20...15....6....1
.8..|..0....0....5...21...35...35...21....7....1
.9..|..0....0....4...25...56...70...56...28....8....1
		

Crossrefs

Cf. A026729, A071675, A078803 (parts <=3), A213887 (parts <=4), A213888 (parts <=5).
Essentially the same as A061676.

Programs

  • Maple
    pts := 6; # A213889 and A061676
    g := 1/(1-t*z*add(z^i,i=0..pts-1)) ;
    for n from 0 to 13 do
        for k from 0 to n do
            coeftayl(g,z=0,n) ;
            coeftayl(%,t=0,k) ;
            printf("%d ",%) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, May 28 2025

A069713 As a square array T(n,k) by antidiagonals, number of ways of partitioning k into up to n parts each no more than 5, or into up to 5 parts each no more than n; as a triangle t(n,k), number of ways of partitioning n into exactly k parts each no more than 6 (i.e., of arranging k indistinguishable standard dice to produce a total of n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 0, 3, 4, 3, 2, 1, 1, 0, 0, 3, 5, 5, 3, 2, 1, 1, 0, 0, 2, 6, 6, 5, 3, 2, 1, 1, 0, 0, 2, 6, 8, 7, 5, 3, 2, 1, 1, 0, 0, 1, 6, 9, 9, 7, 5, 3, 2, 1, 1, 0, 0, 1, 6, 11, 11, 10, 7, 5, 3, 2, 1, 1, 0, 0, 0, 5, 11, 14, 12, 10, 7, 5
Offset: 0

Views

Author

Henry Bottomley, Apr 01 2002

Keywords

Examples

			As square array, rows start: 1,0,0,0,0,0,...; 1,1,1,1,1,1,...; 1,1,2,2,3,3,...; 1,1,2,3,4,5,...; 1,1,2,3,5,6,...; 1,1,2,3,5,7,...; etc. As triangle, rows start: 1; 0,1; 0,1,1; 0,1,1,1; 0,1,2,1,1; 0,1,2,2,1,1; 0,1,3,3,2,1,1; etc. T(3,7)=6 since 7 can be written as 5+2, 5+1+1, 4+3, 4+2+1, 3+3+1, 3+2+2; or alternatively as 2+2+1+1+1, 3+1+1+1, 2+2+2+1, 3+2+1+1, 3+2+2, 3+3+1. t(10,3)=6 since 10 can be written as 6+3+1, 6+2+2, 5+4+1, 5+3+2, 4+4+2, 4+3+3.
		

Crossrefs

Cf. A061676 for a similar triangle, though with distinguishable dice (and a different offset). Antidiagonal sums of T(n, k), i.e., row sums (over k) of t(n, k), are A001402. First 22 terms are same as A068914 (see formula).

Formula

If k<6 T(n,k) = A068914(n,k). T(n,k) = T(n,5n-k); t(n,k) = t(7n-k,k). T(floor(5n/2),n) = t(n,floor(7n/2)) = A001975(n).
Showing 1-5 of 5 results.