A001592
Hexanacci numbers: a(n+1) = a(n)+...+a(n-5) with a(0)=...=a(4)=0, a(5)=1.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617, 15109, 29970, 59448, 117920, 233904, 463968, 920319, 1825529, 3621088, 7182728, 14247536, 28261168, 56058368, 111196417, 220567305, 437513522, 867844316, 1721441096, 3414621024
Offset: 0
- Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Indranil Ghosh, Table of n, a(n) for n = 0..3361 (terms 0..200 from T. D. Noe)
- Joerg Arndt, Matters Computational (The Fxtbook), pp. 307-309
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-135.
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- I. Flores, k-Generalized Fibonacci numbers, Fib. Quart., 5 (1967), 258-266.
- Taras Goy and Mark Shattuck, Some Toeplitz-Hessenberg Determinant Identities for the Tetranacci Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.6.8.
- F. T. Howard and Curtis Cooper, Some identities for r-Fibonacci numbers, Fibonacci Quart. 49 (2011), no. 3, 231-243.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 13
- Omar Khadir, László Németh, and László Szalay, Tiling of dominoes with ranked colors, Results in Math. (2024) Vol. 79, Art. No. 253. See p. 2.
- Sergey Kirgizov, Q-bonacci words and numbers, arXiv:2201.00782 [math.CO], 2022.
- László Németh and László Szalay, Explicit solution of system of two higher-order recurrences, arXiv:2408.12196 [math.NT], 2024. See p. 10.
- Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
- Eric Weisstein's World of Mathematics, Hexanacci Number
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1).
Row 6 of arrays
A048887 and
A092921 (k-generalized Fibonacci numbers).
-
CoefficientList[Series[x^5/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6), {x, 0, 50}], x]
a[0] = a[1] = a[2] = a[3] = a[4] = 0; a[5] = a[6] = 1; a[n_] := a[n] = 2 a[n - 1] - a[n - 7]; Array[a, 36]
LinearRecurrence[{1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
-
a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,1,1,1,1,1]^n*[0;0;0;0;0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
a(n)= my(x='x, p=polrecip(1 - x - x^2 - x^3 - x^4 - x^5 - x^6)); polcoef(lift(Mod(x,p)^n),5);
vector(31,n,a(n-1)) \\ Joerg Arndt, May 16 2021
A213887
Triangle of coefficients of representations of columns of A213743 in binomial basis.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 0, 4, 6, 4, 1, 0, 0, 3, 10, 10, 5, 1, 0, 0, 2, 12, 20, 15, 6, 1, 0, 0, 1, 12, 31, 35, 21, 7, 1, 0, 0, 0, 10, 40, 65, 56, 28, 8, 1, 0, 0, 0, 6, 44, 101, 120, 84, 36, 9, 1, 0
Offset: 0
As a triangle, this begins
n/k.|..0....1....2....3....4....5....6....7....8....9
=====================================================
.0..|..1
.1..|..0....1
.2..|..0....1....1
.3..|..0....1....2....1
.4..|..0....1....3....3....1
.5..|..0....0....4....6....4....1
.6..|..0....0....3...10...10....5....1
.7..|..0....0....2...12...20...15....6....1
.8..|..0....0....1...12...31...35...21....7....1
.9..|..0....0....0...10...40...65...56...28....8....1
-
pts := 4; # A213887
g := 1/(1-t*z*add(z^i,i=0..pts-1)) ;
for n from 0 to 13 do
for k from 0 to n do
coeftayl(g,z=0,n) ;
coeftayl(%,t=0,k) ;
printf("%d ",%) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, May 28 2025
A078803
Triangular array T given by T(n,k) = number of compositions of n into k parts, each in the set {1,2,3}.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 0, 3, 3, 1, 0, 2, 6, 4, 1, 0, 1, 7, 10, 5, 1, 0, 0, 6, 16, 15, 6, 1, 0, 0, 3, 19, 30, 21, 7, 1, 0, 0, 1, 16, 45, 50, 28, 8, 1, 0, 0, 0, 10, 51, 90, 77, 36, 9, 1, 0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1, 0, 0, 0, 1, 30, 141, 266, 266, 156, 55, 11, 1, 0, 0, 0, 0, 15, 126
Offset: 1
T(5,2) = 2 counts the compositions 2+3 and 3+2.
Triangle begins
1;
1, 1;
1, 2, 1;
0, 3, 3, 1;
0, 2, 6, 4, 1;
0, 1, 7, 10, 5, 1;
0, 0, 6, 16, 15, 6, 1;
0, 0, 3, 19, 30, 21, 7, 1;
0, 0, 1, 16, 45, 50, 28, 8, 1;
0, 0, 0, 10, 51, 90, 77, 36, 9, 1;
0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1;
0, 0, 0, 1, 30, 141, 266, 266, 156, 55, 11, 1;
- Clark Kimberling, Binary words with restricted repetitions and associated compositions of integers, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 194 (2009) 141-151.
- Alois P. Heinz, Rows n = 1..141, flattened
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 18.
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
-
A078803 := proc(n,k) add( binomial(j,n-3*k+2*j)*binomial(k,j),j=0..k) ; end proc:
# R. J. Mathar, Feb 22 2011
-
nn=8;CoefficientList[Series[1/(1-y(x+x^2+x^3)),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Jan 08 2013 *)
A213889
Triangle of coefficients of representations of columns of A213745 in binomial basis.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 0, 6, 15, 20, 15, 6, 1, 0, 0, 5, 21, 35, 35, 21, 7, 1, 0, 0, 4, 25, 56, 70, 56, 28, 8, 1, 0, 0, 3, 27, 80, 126, 126, 84, 36, 9, 1
Offset: 0
As a triangle, this begins
n/k.|..0....1....2....3....4....5....6....7....8....9
=====================================================
.0..|..1
.1..|..0....1
.2..|..0....1....1
.3..|..0....1....2....1
.4..|..0....1....3....3....1
.5..|..0....1....4....6....4....1
.6..|..0....1....5...10...10....5....1
.7..|..0....0....6...15...20...15....6....1
.8..|..0....0....5...21...35...35...21....7....1
.9..|..0....0....4...25...56...70...56...28....8....1
-
pts := 6; # A213889 and A061676
g := 1/(1-t*z*add(z^i,i=0..pts-1)) ;
for n from 0 to 13 do
for k from 0 to n do
coeftayl(g,z=0,n) ;
coeftayl(%,t=0,k) ;
printf("%d ",%) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, May 28 2025
A069713
As a square array T(n,k) by antidiagonals, number of ways of partitioning k into up to n parts each no more than 5, or into up to 5 parts each no more than n; as a triangle t(n,k), number of ways of partitioning n into exactly k parts each no more than 6 (i.e., of arranging k indistinguishable standard dice to produce a total of n).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 0, 3, 4, 3, 2, 1, 1, 0, 0, 3, 5, 5, 3, 2, 1, 1, 0, 0, 2, 6, 6, 5, 3, 2, 1, 1, 0, 0, 2, 6, 8, 7, 5, 3, 2, 1, 1, 0, 0, 1, 6, 9, 9, 7, 5, 3, 2, 1, 1, 0, 0, 1, 6, 11, 11, 10, 7, 5, 3, 2, 1, 1, 0, 0, 0, 5, 11, 14, 12, 10, 7, 5
Offset: 0
As square array, rows start: 1,0,0,0,0,0,...; 1,1,1,1,1,1,...; 1,1,2,2,3,3,...; 1,1,2,3,4,5,...; 1,1,2,3,5,6,...; 1,1,2,3,5,7,...; etc. As triangle, rows start: 1; 0,1; 0,1,1; 0,1,1,1; 0,1,2,1,1; 0,1,2,2,1,1; 0,1,3,3,2,1,1; etc. T(3,7)=6 since 7 can be written as 5+2, 5+1+1, 4+3, 4+2+1, 3+3+1, 3+2+2; or alternatively as 2+2+1+1+1, 3+1+1+1, 2+2+2+1, 3+2+1+1, 3+2+2, 3+3+1. t(10,3)=6 since 10 can be written as 6+3+1, 6+2+2, 5+4+1, 5+3+2, 4+4+2, 4+3+3.
Cf.
A061676 for a similar triangle, though with distinguishable dice (and a different offset). Antidiagonal sums of T(n, k), i.e., row sums (over k) of t(n, k), are
A001402. First 22 terms are same as
A068914 (see formula).
Showing 1-5 of 5 results.
Comments