A061701 Smallest number m such that GCD of d(m^2) and d(m) is 2n+1 where d(m) is the number of divisors of m.
1, 12, 4608, 1728, 1260, 509607936, 2985984, 144, 56358560858112, 5159780352, 302400, 6232805962420322304, 207360000, 887040, 201226394483583074212773888, 15407021574586368, 248832, 2286144000, 26623333280885243904, 522547200, 8430527379596857675529996470321152
Offset: 0
Keywords
Examples
For n = 7, GCD[d(20736),d(144)] = GCD[45,15] = 15 = 2*7+1.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..28
Formula
a(n) = Min[m : GCD[d(m^2), d(m)] = 2n+1].
Extensions
More terms from David Wasserman, Jun 20 2002
a(12)-a(13) corrected and a(17)-a(20) added by Amiram Eldar, Nov 26 2023
Comments