cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A069782 Numbers k such that gcd(d(k^3), d(k)) = 2^w for some w.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107
Offset: 1

Views

Author

Labos Elemer, Apr 08 2002

Keywords

Comments

The first missing integer is 432 (see in A069781).

Examples

			Below 100000 only 314 integers are missing, collected in A069781.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := GCD[DivisorSigma[0, x^3], DivisorSigma[0, x]]; Do[s=f[n]; If[IntegerQ[Log[2, s]], Print[{n, s}]], {n, 1, 100000}]
  • PARI
    is(n)=my(f=factor(n)[, 2], g=gcd(prod(i=1, #f, 3*f[i]+1), prod(i=1, #f, f[i]+1))); g>>valuation(g, 2)==1 \\ Charles R Greathouse IV, Oct 16 2015

A069781 Numbers k such that gcd(d(k^3), d(k)) is not a power of 2.

Original entry on oeis.org

432, 576, 648, 1600, 2000, 2160, 2880, 2916, 3024, 3136, 3240, 4032, 4536, 4752, 4800, 5000, 5488, 5616, 6000, 6336, 7128, 7344, 7488, 7744, 8208, 8424, 9408, 9792, 9936, 10125, 10800, 10816, 10944, 11016, 11200, 12312, 12528, 13248, 13392
Offset: 1

Views

Author

Labos Elemer, Apr 08 2002

Keywords

Comments

The complement of this sequence in the positive integers A000027 is A069782. - M. F. Hasler, Jan 18 2015
The numbers of the form 4*3^(7*m - 1), m >= 1, are terms. - Marius A. Burtea, Oct 18 2019

Examples

			For n<100000, gcd[d(n^3),d[n]] = {5,7,10,14,20,28,40,80} which is obtained for n={20736,576,432,2880,54000,20160,2160,15120} respectively.
		

Crossrefs

Programs

  • Magma
    f:=func; [k:k in [1..14000]| not IsIntegral(Log(2,f(k)))]; // Marius A. Burtea, Oct 18 2019
  • Mathematica
    f[x_] := GCD[DivisorSigma[0, x^3], DivisorSigma[0, x]] Do[s=f[n]; If[ !IntegerQ[Log[2, s]], Print[n]], {n, 1, 100000}]
    Select[Range[14000],!IntegerQ[Log[2,GCD[DivisorSigma[0,#^3], DivisorSigma[ 0,#]]]]&] (* Harvey P. Dale, Mar 20 2018 *)
  • PARI
    is(n)=my(f=factor(n)[,2], g=gcd(prod(i=1,#f,3*f[i]+1), prod(i=1,#f,f[i]+1))); g!=1<Charles R Greathouse IV, Oct 16 2015
    

Formula

log_2(gcd(A000005(n^3), A000005(n))) is nonintegral.

A069785 a(n) = A061680(n!).

Original entry on oeis.org

1, 1, 1, 1, 1, 15, 15, 3, 5, 135, 135, 99, 99, 9, 63, 21, 21, 459, 459, 135, 19, 15, 15, 15, 21, 189, 189, 585, 585, 18225, 18225, 675, 15, 135, 891, 8505, 25515, 81, 81, 7695, 7695, 1575, 1575, 4725, 6615, 40635, 40635, 945, 1215, 3645, 3645, 151875, 151875
Offset: 1

Views

Author

Labos Elemer, Apr 09 2002

Keywords

Examples

			Observe cases when consecutive terms are equal: n={1,2,3,4,6,10,...,78,80,82,88,96}.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{e = FactorInteger[n!][[;;, 2]]}, GCD[Times @@ (2*e+1), Times @@ (e+1)]]; Array[a, 100] (* Amiram Eldar, Dec 02 2023 *)
  • PARI
    a(n) = {my(e = factor(n!)[,2]); gcd(vecprod(apply(x -> 2*x+1, e)), vecprod(apply(x -> x+1, e)));} \\ Amiram Eldar, Dec 02 2023

Formula

a(n) = A061680(A000142(n)). - Amiram Eldar, Dec 02 2023
Showing 1-3 of 3 results.