A061721 Number of zeros in the character table of the dihedral group with 2n elements.
0, 0, 1, 3, 2, 4, 3, 10, 4, 8, 5, 15, 6, 12, 7, 26, 8, 16, 9, 27, 10, 20, 11, 42, 12, 24, 13, 39, 14, 28, 15, 62, 16, 32, 17, 55, 18, 36, 19, 74, 20, 40, 21, 63, 22, 44, 23, 106, 24, 48, 25, 75, 26, 52, 27, 106, 28, 56, 29, 103, 30, 60, 31, 142, 32, 64, 33, 99
Offset: 1
Keywords
Examples
a(3) = 1 because the group is isomorphic to S_3 and the table is : 1, 1, 1 1,-1, 1 2, 0,-1
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A060762.
Programs
-
Mathematica
a[n_] := Count[FiniteGroupData[{"DihedralGroup", n}, "CharacterTable"], 0, 2]; Array[a, 100] (* Jean-François Alcover, Oct 08 2016 *)
-
Sage
def A061721(n) : if n % 2 == 1 : return (n - 1) // 2 if n % 4 == 2 : return n - 2 numzeros = n - 2 np = n // 4 for m in range(1, n // 2) : t = lcm(m, np) if (t // np) % 2 == 1 : maxmul = m * n // 2 numzeros += (maxmul // t) - (maxmul // (2*t)) return numzeros # Eric M. Schmidt, Jul 04 2012
Formula
For odd n, a(n) = (n-1)/2.
For n = 2 (mod 4), a(n) = n - 2. - Eric M. Schmidt, Jul 04 2012
Extensions
More terms from Eric M. Schmidt, Jul 04 2012