cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A374707 Number of distinct sums i^3 + j^3 for 0<=i<=j<=n.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 90, 104, 119, 135, 151, 169, 188, 208, 229, 251, 274, 298, 322, 348, 375, 402, 431, 461, 492, 524, 556, 590, 623, 659, 695, 733, 772, 811, 851, 893, 936, 980, 1025, 1071, 1118, 1166, 1213, 1263, 1314, 1365, 1418, 1471, 1525, 1580, 1637, 1695, 1753
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(v=vector(2*n^3+1)); for(i=0, n, for(j=i, n, v[i^3+j^3+1]+=1)); sum(i=1, #v, v[i]>0);

A374714 Number of distinct sums i^3 + j^3 + k^3 + l^3 for 1<=i<=j<=k<=l<=n.

Original entry on oeis.org

1, 5, 15, 35, 70, 119, 202, 317, 473, 671, 902, 1138, 1515, 2008, 2521, 3039, 3758, 4592, 5539, 6657, 7879, 9209, 10797, 12304, 14243, 16371, 18348, 21006, 23816, 26563, 29848, 33046, 36698, 40190, 44885, 49068, 54040, 59479, 64762, 70420, 76810, 83414, 90659, 98158, 105838, 114127, 123048
Offset: 1

Views

Author

Seiichi Manyama, Jul 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(v=vector(4*n^3)); for(i=1, n, for(j=i, n, for(k=j, n, for(l=k, n, v[i^3+j^3+k^3+l^3]+=1)))); sum(i=1, #v, v[i]>0);
    
  • Python
    def A374714(n): return len({i**3+j**3+k**3+l**3 for i in range(1,n+1) for j in range(i,n+1) for k in range(j,n+1) for l in range(k,n+1)}) # Chai Wah Wu, Jul 18 2024

A061798 Number of sums i^3 + j^3 that occur more than once for 1<=i<=j<=n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 7, 7, 8, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 12, 13, 13, 14, 15, 16, 16, 16, 17, 17, 19, 19, 19, 19, 20, 20, 20, 21, 23, 24, 24, 24, 25, 25, 25, 25
Offset: 1

Views

Author

Labos Elemer, Jun 22 2001

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(v=vector(2*n^3, i, 0)); for(i=1, n, for(j=i, n, v[i^3+j^3]+=1)); sum(i=1, #v, v[i]>1); \\ Seiichi Manyama, May 14 2024
    
  • Ruby
    def A(n)
      h = {}
      (1..n).each{|i|
        (i..n).each{|j|
          k = i * i * i + j * j * j
          if h.has_key?(k)
            h[k] += 1
          else
            h[k] = 1
          end
        }
      }
      h.to_a.select{|i| i[1] > 1}.size
    end
    def A061798(n)
      (1..n).map{|i| A(i)}
    end
    p A061798(80) # Seiichi Manyama, May 14 2024

A374713 Number of distinct sums i^3 + j^3 + k^3 for 1<=i<=j<=k<=n.

Original entry on oeis.org

1, 4, 10, 20, 35, 55, 83, 119, 164, 218, 280, 343, 431, 535, 648, 760, 903, 1064, 1241, 1442, 1659, 1891, 2151, 2409, 2714, 3044, 3369, 3754, 4160, 4582, 5044, 5499, 6015, 6500, 7094, 7669, 8308, 8990, 9683, 10394, 11180, 12010, 12876, 13773, 14720, 15693, 16721, 17705, 18845, 20010
Offset: 1

Views

Author

Seiichi Manyama, Jul 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(v=vector(3*n^3)); for(i=1, n, for(j=i, n, for(k=j, n, v[i^3+j^3+k^3]+=1))); sum(i=1, #v, v[i]>0);
Showing 1-4 of 4 results.