A061792 a(n) = 49*(n*(n+1)/2) + 6.
6, 55, 153, 300, 496, 741, 1035, 1378, 1770, 2211, 2701, 3240, 3828, 4465, 5151, 5886, 6670, 7503, 8385, 9316, 10296, 11325, 12403, 13530, 14706, 15931, 17205, 18528, 19900, 21321, 22791, 24310, 25878, 27495, 29161, 30876, 32640, 34453, 36315, 38226, 40186, 42195
Offset: 0
References
- D. M. Burton, Elementary Number Theory, Allyn and Bacon, Inc. Boston, MA, 1976, p. 17.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
49*Accumulate[Range[0,40]]+6 (* or *) LinearRecurrence[{3,-3,1},{6,55,153},40] (* Harvey P. Dale, Apr 11 2012 *)
-
PARI
a(n) = 49*(n*(n + 1)/2) + 6
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=6, a(1)=55, a(2)=153. - Harvey P. Dale, Apr 11 2012
From Elmo R. Oliveira, Oct 23 2024: (Start)
G.f.: (6 + 37*x + 6*x^2)/(1 - x)^3.
E.g.f.: (6 + 49*x + 49*x^2/2)*exp(x).
Comments