cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061792 a(n) = 49*(n*(n+1)/2) + 6.

Original entry on oeis.org

6, 55, 153, 300, 496, 741, 1035, 1378, 1770, 2211, 2701, 3240, 3828, 4465, 5151, 5886, 6670, 7503, 8385, 9316, 10296, 11325, 12403, 13530, 14706, 15931, 17205, 18528, 19900, 21321, 22791, 24310, 25878, 27495, 29161, 30876, 32640, 34453, 36315, 38226, 40186, 42195
Offset: 0

Views

Author

Jason Earls, Jun 22 2001

Keywords

Comments

"If n is a triangular number, then so are 9*n+1, 25*n+3 and 49*n+6. (Euler, 1775)." Burton, p. 17.

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon, Inc. Boston, MA, 1976, p. 17.

Crossrefs

Programs

  • Mathematica
    49*Accumulate[Range[0,40]]+6 (* or *) LinearRecurrence[{3,-3,1},{6,55,153},40] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    a(n) = 49*(n*(n + 1)/2) + 6

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=6, a(1)=55, a(2)=153. - Harvey P. Dale, Apr 11 2012
From Elmo R. Oliveira, Oct 23 2024: (Start)
G.f.: (6 + 37*x + 6*x^2)/(1 - x)^3.
E.g.f.: (6 + 49*x + 49*x^2/2)*exp(x).
a(n) = 6 + 49*A000217(n) = A177071(n)/2. (End)