cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061802 Sum of n-th row of triangle of primes: 2; 2 3 2; 2 3 5 3 2; 2 3 5 7 5 3 2; ...; where n-th row contains 2n+1 terms.

Original entry on oeis.org

2, 7, 15, 27, 45, 69, 99, 135, 177, 229, 289, 357, 435, 519, 609, 709, 821, 941, 1069, 1207, 1351, 1503, 1665, 1837, 2023, 2221, 2425, 2635, 2851, 3073, 3313, 3571, 3839, 4115, 4403, 4703, 5011, 5331, 5661, 6001, 6353, 6713, 7085, 7469, 7859, 8255, 8665
Offset: 0

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Comments

Row sums of A138143. - Omar E. Pol, Feb 13 2014
For n = 3..9, a(n) = 3*(n^2 - 3*n + 5). - Nicholas Drozd, Apr 10 2021

Crossrefs

Cf. A001043 (first differences), A007504, A138143.
Partial sums of A011974.

Programs

  • Mathematica
    Accumulate[Join[{2},ListConvolve[{1,1},Prime[Range[100]]]]] (* Paolo Xausa, Oct 31 2023 *)
  • PARI
    { n=-1; a=q=0; forprime (p=2, prime(1001), write("b061802.txt", n++, " ", a+=p + q); q=p ) } \\ Harry J. Smith, Jul 28 2009

Formula

a(n) = a(n-1) + prime(n) + prime(n-1).
a(n) = A007504(n) + A007504(n+1) so we have the asymptotic expansion a(n) ~ n^2*log(n). - Henry Bottomley, May 30 2001

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 29 2001