A061896 Triangle of coefficients of Lucas polynomials.
2, 1, 0, 1, 2, 0, 1, 3, 0, 0, 1, 4, 2, 0, 0, 1, 5, 5, 0, 0, 0, 1, 6, 9, 2, 0, 0, 0, 1, 7, 14, 7, 0, 0, 0, 0, 1, 8, 20, 16, 2, 0, 0, 0, 0, 1, 9, 27, 30, 9, 0, 0, 0, 0, 0, 1, 10, 35, 50, 25, 2, 0, 0, 0, 0, 0, 1, 11, 44, 77, 55, 11, 0, 0, 0, 0, 0, 0, 1, 12, 54, 112, 105, 36, 2, 0, 0, 0, 0, 0, 0, 1, 13
Offset: 0
Examples
Triangle begins: 2, 1, 0. 1, 2, 0. 1, 3, 0, 0. 1, 4, 2, 0, 0. 1, 5, 5, 0, 0, 0. 1, 6, 9, 2, 0, 0, 0.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Mathematica
a[0, 0] := 2; a[n_, 0] := 1; a[n_, n_] := 0; a[n_, k_] := Binomial[n - k, k]*n/(n - k); Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *)
Formula
a(n, k) = C(n-k, k)*n/(n-k).
a(n, k) = C(n-k, k) + C(n-k-1, k-1).
a(n, k) = a(n-1, k) + a(n-2, k-1) with a(n, 0)=1 if n>0 and a(0, 0)=2.