A061903 Number of distinct elements of the iterative cycle: n -> sum of digits of n^2.
1, 1, 4, 1, 3, 3, 1, 2, 2, 1, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 4, 1, 2, 2, 2, 2, 3, 2, 3, 2, 1, 2, 3, 2, 2, 2, 2, 3, 2, 1, 3, 2, 2, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 3, 2, 2, 2, 2, 2, 2, 1, 2, 3, 3, 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 1, 3, 3, 3, 3, 2, 2, 3, 3, 2, 1, 4, 1, 2, 2
Offset: 0
Examples
a(2) = 4 since 2 -> 4 -> 1+6 = 7 -> 4+9 = 13 -> 1+6+9 = 16 -> 2+5+6 = 13, thus {4,7,13,16} are the distinct elements of the iterative cycle of 2. a(6) = 1 since 6 -> 3+6 = 9 -> 8+1 = 9 thus 9 is the only element in the iterative cycle of 6.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
A:= proc(n) local L,m,x; L:= {}; x:= n; do x:= convert(convert(x^2,base,10),`+`); if member(x,L) then return nops(L) fi; L:= L union {x}; od: end proc: seq(A(n), n=0..200); # Robert Israel, May 30 2014
-
PARI
a(n)=my(v=List()); while(1, n=sumdigits(n^2); for(i=1, #v, if(n==v[i], return(#v))); listput(v,n)) \\ Charles R Greathouse IV, May 30 2014
Extensions
Corrected a(0) and example, Robert Israel, May 30 2014
Comments