A061926 Square table by antidiagonals where odd rows are partial sums of previous row, even rows are sums of pairs of values in previous row and initial row is 0 and 1 alternating.
0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 1, 0, 1, 2, 3, 3, 1, 0, 0, 3, 4, 6, 4, 1, 0, 1, 3, 5, 10, 9, 5, 1, 0, 0, 4, 6, 15, 16, 14, 6, 1, 0, 1, 4, 7, 21, 25, 30, 19, 7, 1, 0, 0, 5, 8, 28, 36, 55, 44, 26, 8, 1, 0, 1, 5, 9, 36, 49, 91, 85, 70, 33, 9, 1, 0, 0, 6, 10, 45, 64, 140, 146, 155, 96, 42, 10
Offset: 0
Examples
From _Sean A. Irvine_, Mar 14 2023: (Start) Table begins: 0 1 0 1 0 1 0 1 0 1 1 2 2 3 3 4 0 1 2 3 4 5 6 7 0 1 3 6 10 15 21 28 0 1 4 9 16 25 36 49 0 1 5 14 30 55 91 140 0 1 6 19 44 85 146 231 0 1 7 26 70 155 301 532 (End)
Crossrefs
Formula
T(0, 2*k) = 0, T(0, 2*k+1) = 1, T(n, 0) = 0, T(2*n, k) = T(2*n-1, k-1) + T(2*n-1, k), T(2*n+1, k) = T(2*n+1, k-1) + T(2*n, k). - Sean A. Irvine, Mar 14 2023