A061931 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 2 (most significant digit on right).
1, 3, 7, 39, 63, 523, 4983, 25007, 892217, 1142775, 1381311, 1751751
Offset: 1
Examples
1234567 -> (1)(01)(11)(001)(101)(011)(111) base 2 -> 1111110111111 base 2 = 8127 and 7 divides 8127.
Crossrefs
Programs
-
Mathematica
b = 2; c = {}; Select[Range[10^4], Divisible[FromDigits[ c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 07 2020 *)
-
Python
def agen(): k, concat = 1, 1 while True: if concat%k == 0: yield k revbink_even = (bin(k+1)[2:])[::-1] revbink_odd = '1' + revbink_even[1:] add_str = revbink_even[revbink_even.index('1'):] + revbink_odd concat = (concat << len(add_str)) + int(add_str, 2) k += 2 g = agen() print([next(g) for i in range(8)]) # Michael S. Branicky, Jan 03 2021
Extensions
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(9)-a(12) from Lars Blomberg, Oct 17 2011
Comments